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1 Exercise 1: Empirical Stylized Facts

1.A Log-returns

We collected daily adjusted closing prices for AAPL, META, and JPM between January 1, 2023
and June 30, 2025 using the yfinance Python package. The daily log-returns were computed as:

R
(i)
t = log

(
P

(i)
t

P
(i)
t−1

)
, i ∈ {AAPL,META, JPM},

where P
(i)
t denotes the adjusted closing price of asset i at day t. Missing data were removed after

aligning the series by date.
Figure 1 displays the resulting log-return series. As expected, returns fluctuate around zero and show
no persistent trend, consistent with weak-form market efficiency. However, volatility is clearly time-
varying: META exhibits the largest fluctuations, AAPL intermediate, and JPM the lowest. Periods of
high volatility tend to cluster together, illustrating the well-known phenomenon of volatility clustering.

1.B ACF and CCF

To study temporal and cross-asset dependence, we computed autocorrelation and cross-correlation
functions for both raw and absolute returns. The empirical autocorrelation function (ACF) for asset
i at lag h is defined as:

ρi(h) =
Cov(R

(i)
t , R

(i)
t−h)√
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t )Var(R

(i)
t−h)

, h = 0, 1, . . . , 25.

The cross-correlation between two assets i and j is given by:

ρi,j(h) =
Cov(R
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.

Both ACFs and CCFs were also computed using absolute returns |R(i)
t | to analyze volatility spillovers.

Figure 2 and Figure 3 shows the results.
The autocorrelation of log returns for AAPL, META, and JPM shows almost no correlation after
lag 0. This indicates that past returns have little predictive power for future returns, confirming
the weak linear dependence typical of stock prices. Absolute returns exhibit stronger but still week
autocorrelations, with lag 1 correlations around 0.2 for AAPL.
Cross-correlations between different stocks’ log returns are moderate at lag 0 (roughly 0.27-0.41)
and decay quickly for higher lags. This suggests some contemporaneous co-movement across assets,
particularly between AAPL and META, but limited predictive influence across weeks.
Cross-correlations of absolute returns are weaker than the autocorrelations of absolute returns, typ-
ically ranging from 0.05 to 0.15 at lag 0. However, they remain positive for most lags, indicating
modest volatility spillover across assets.

1.C QQ-plots and Jarque–Bera test

The normality of log-returns was examined through both graphical and statistical methods. Figure 4
presents QQ-plots comparing the empirical quantiles of returns with those from a standard normal
distribution. For all three assets, the curves deviate from the 45° line: points lie below the line on the
left tail and above it on the right, indicating left skewness and excess kurtosis (fat tails).
To confirm this, we applied the Jarque–Bera test, which jointly tests skewness and kurtosis deviations
from the normal distribution:

JB =
n

6

(
S2 +

(K − 3)2

4

)
,
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Figure 1: Daily log-returns for AAPL, META, and JPM over the period January 2023 – June 2025.
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Figure 2: Autocorrelation function of raw and absolute log-returns up to lag 25.

Figure 3: Cross-correlation function of raw and absolute log-returns up to lag 25.

Table 1: Jarque–Bera normality test results.

Asset JB Statistic p-value Normality (5%)

AAPL 3619.30 0.000 Reject
META 7608.77 0.000 Reject
JPM 2203.51 0.000 Reject

3



Figure 4: Normal QQ-plots of daily log-returns for AAPL, META, and JPM.
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where S is the sample skewness and K the sample kurtosis. The null hypothesis H0: ”the data follow
a normal distribution” was rejected for all assets at the 5% significance level (Table 1).
In summary, the log-returns exhibit the main empirical stylized facts of financial data: (i) absence of
linear autocorrelation, (ii) volatility clustering, (iii) cross-asset volatility dependence, and (iv) non-
normal, heavy-tailed return distributions.

2 Exercise 2: Value-at-Risk and Expected Shortfall

In this exercise, we compute Value-at-Risk (VaR) and Expected Shortfall (ES) for the daily losses

Lt = −Rt,

where Rt are the log-returns from Exercise 1. We consider an estimation window of W = 252 days
and compare five approaches: historical simulation, Gaussian, Student-t, conditional parametric (AR
+ GARCH), and filtered historical simulation (FHS).

2.A Historical Simulation

The historical simulation approach uses the empirical cumulative distribution function (CDF) of past
losses. For a given confidence level α, the VaR is defined as the α-quantile of the empirical distribution:

VaRhist
α = inf{x | FL(x) ≥ α}.

The Expected Shortfall is the conditional expectation of losses exceeding the VaR:

EShistα = E[L | L ≥ VaRhist
α ].

5



2.B Gaussian Model

Assuming losses follow a normal distribution Lt ∼ N (µ, σ2), we fit the mean µ and standard deviation
σ by maximum likelihood. The closed-form VaR and ES formulas are:

VaRGauss
α = µ+ σΦ−1(α),

ESGauss
α = µ+

σϕ(Φ−1(α))

1− α
,

where Φ−1 and ϕ denote the inverse CDF and PDF of the standard normal distribution, respectively.

2.C Student-t Model

To capture heavy tails, we fit a Student-t distribution with degrees of freedom ν, location µt, and
scale σt using maximum likelihood. VaR and ES are:

VaRt
α = µt + σtt

−1
ν (α),

EStα = µt + σt
ν + (t−1

ν (α))2

ν − 1

tν(t
−1
ν (α))

1− α
,

where t−1
ν and tν denote the inverse CDF and PDF of the Student-t distribution.

Lower degrees of freedom ν imply heavier tails, leading to higher VaR and ES estimates at high
confidence levels. This highlights the importance of modeling fat tails in financial loss distributions.

2.D Conditional parametric modeling: AR(p) + GARCH(1,1)

To account for conditional dynamics in losses, we model the mean using an AR(p) process and the
volatility using a GARCH(1,1) model with Gaussian innovations.
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Figure 5: Partial autocorrelation function (PACF) of daily log-returns for AAPL, META, and JPM.
The blue shaded area represents the 95% confidence interval under the null hypothesis of no autocor-
relation.

The order p of the AR model is determined by inspecting the partial autocorrelation function (PACF)
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of the log-returns in Figure 5. All PACF coefficients for lags greater than zero lie within the 95%
confidence band and fluctuate around zero, indicating the absence of significant linear dependence
at positive lags. Therefore, an AR(0) specification, corresponding to a pure white noise model, is
sufficient to capture the linear structure in the mean of the losses.
Let Lt denote the loss at time t. Denoting by µ̂W+1 and σ̂W+1 the 1-step-ahead forecasts of the
conditional mean and volatility from the fitted AR(0) + GARCH(1,1) model, the conditional Value-
at-Risk (VaR) and Expected Shortfall (ES) are computed using the standard closed-form VaR and ES
formulas:

VaRcond
α = µ̂W+1 + σ̂W+1 zα, EScondα = µ̂W+1 +

σ̂W+1 ϕ(Φ
−1(α))

1− α
,

where ϕ(·) is the standard normal density.
This approach captures both the conditional mean and conditional heteroskedasticity in the loss series.

2.E Filtered Historical Simulation (FHS)

Filtered Historical Simulation combines the conditional AR(0) + GARCH(1,1) model with a non-
parametric treatment of standardized residuals. First, we fit the AR(0) model to the losses and
compute residuals ε̂t = Lt − µ̂t. Then, a GARCH(1,1) model is fitted to the residuals to estimate
conditional volatility σ̂t and obtain standardized residuals:

ε̃t =
ε̂t
σ̂t

, t = 1, . . . ,W.

Instead of assuming a parametric distribution for the innovation ε̃W+1, we apply a non-parametric
bootstrap: we resampleM = 1000 values with replacement from the standardized residuals to generate
1-step-ahead scenarios. The simulated losses are then reconstructed as:

L∗
W+1 = µ̂W+1 + σ̂W+1 ε̃

∗
W+1.

Finally, the 1-step-ahead VaR and ES forecasts are obtained from the empirical quantiles and averages
of the simulated loss distribution:

VaRFHS
α = Quantileα(L

∗
W+1) = inf{x | FL∗

W+1
(x) ≥ α},

ESFHS
α = E[L∗

W+1 | L∗
W+1 ≥ VaRFHS

α ].

This method combines the benefits of conditional modeling (capturing time-varying volatility and
mean) with the flexibility of a non-parametric distribution for innovations, providing a more realistic
estimation of tail risk.

2.F Results

Table 2 and Table 3 report the estimated VaR and ES for each asset and confidence level. Figure 6
shows the estimated PDFs of losses.
Note that for the Conditional parametric model, the PDF used to compute VaR and ES is theoretical
and conditional on the information available at time W . In contrast, the FHS approach estimates
the next-day loss distribution non-parametrically via simulation of standardized residuals, rather than
using an analytical formula. Historical simulation also relies on an empirical distribution and a kernel
density estimate is used for visualization.

Across all three assets and both confidence levels, the five methods produce VaR estimates that lie
within a comparable numerical range. This indicates that, despite relying on different distributional
assumptions, the models agree on the order of magnitude of tail losses. But Gaussian VaR is system-
atically lower due to thin tails, while Student-t and Historical tend to produce higher values at the
99% level. FHS and the conditional parametric model generally fall between these extremes.
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Table 2: Value-at-Risk (VaR) results for the first 252-day window.

Ticker Alpha Historical Gaussian Student-t Parametric FHS

AAPL
95% 0.017587 0.019421 0.018856 0.019611 0.017004
99% 0.032997 0.028092 0.030776 0.028361 0.028708

META
95% 0.027310 0.035232 0.030027 0.031416 0.024515
99% 0.043077 0.051512 0.053435 0.046116 0.036081

JPM
95% 0.018300 0.020292 0.017892 0.014451 0.011423
99% 0.037581 0.029149 0.034002 0.020888 0.024574

Table 3: Expected Shortfall (ES) results for the first 252-day window.

Ticker Alpha Historical Gaussian Student-t Parametric FHS

AAPL
95% 0.026807 0.024738 0.026424 0.024976 0.025729
99% 0.040701 0.032404 0.039146 0.032712 0.038851

META
95% 0.035920 0.045215 0.045386 0.040429 0.031771
99% 0.044618 0.059608 0.073637 0.053425 0.039434

JPM
95% 0.030295 0.025723 0.028770 0.018398 0.018972
99% 0.047523 0.033553 0.050030 0.024089 0.028465

Figure 6: Estimated PDFs of losses for AAPL, META, and JPM using five approaches.
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The PDF plots reveal deviations from Gaussianity across assets, with all three showing heavier tails
and stronger kurtosis than the normal model can capture. Student-t and conditional parametric
approaches provide better tail fitting, while FHS most closely reproduces the empirical distributional
features. The differences across AAPL, META, and JPM further confirm that tail behaviour is asset-
dependent.

3 Exercise 3

Backtesting our VaR and ES estimation methods is fundamental for evaluating the adequacy of the
risk model. It enables us to determine whether the predicted risk levels align with realized portfolio
losses and to identify potential misspecification in the modeling of tail events. In this section, we
perform the Kupiec Proportion-of-Failures test and the Christoffersen conditional coverage test for
the Value-at-Risk, as well as the Acerbi and Székely Z1 test for Expected Shortfall.

3.A Backtesting VaR and ES backtesting procedure described

For each confidence level (95%, 99%), ticker, and method, we computed one-step-ahead VaR and ES
forecasts using a rolling window of 252 daily observations on the loss series. At each step, the model
was re-estimated on the current window and used to generate the next-day forecast. This procedure
produces a time series of VaR and ES estimates aligned with the out-of-sample period.

For 95% confidence we obtained the following VaR forecast for each ticker:
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Figure 7: Time series of VaR forecasts versus realized losses.

Note that “Parametric” refers to the conditional parametric method for the remainder of this
notebook.

From this plot, we observe that the non-parametric methods produce relatively flat VaR curves,
since they do not explicitly react to changes in volatility as it is washed out by the estimation window.
In contrast, the parametric approaches such as FHS and the conditional parametric model adjust the
VaR threshold dynamically and capture local volatility spikes.

The Kupiec test examines whether the observed violation rate matches the model’s nominal level,
while the Christoffersen test evaluates both correct coverage and independence of violations. Rejecting
the null hypothesis in either test therefore signals that the VaR model is incorrect.

To perform both tests, we used each model’s one-step-ahead 95% VaR forecasts. For the Kupiec
Proportion-of-Failures (POF) test, we evaluated the null hypothesis

POF ∼ χ2
1,
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and for the Christoffersen conditional coverage test we used

POF + IND ∼ χ2
2.

Where IND is derived from the Christoffersen independence test. At the 5% significance level, we
reject the null hypothesis when the p-value is below 0.05. We backtested our VaR across all assets
using 5% significance test, and we obtained the following results:

Test statistic POF Pvalue POF Test statistic CD coverage Pvalue CD coverage
Ticker Method

AAPL historical 11.077879 8.74e-04 14.674895 6.51e-04
gaussian 7.455310 6.32e-03 9.212069 9.99e-03
student 20.031440 7.62e-06 22.561494 1.26e-05
parametric 5.389282 2.03e-02 5.425151 6.64e-02
fhs 7.455310 6.32e-03 7.513060 2.34e-02

META historical 1.073138 3.00e-01 1.273273 5.29e-01
gaussian 0.131441 7.17e-01 0.186728 9.11e-01
student 1.580101 2.09e-01 1.812080 4.04e-01
parametric 0.743120 3.89e-01 1.962968 3.75e-01
fhs 0.124872 7.24e-01 0.131576 9.36e-01

JPM historical 1.580101 2.09e-01 4.263305 1.19e-01
gaussian 0.014105 9.05e-01 2.720578 2.57e-01
student 1.073138 3.00e-01 4.188907 1.23e-01
parametric 0.014105 9.05e-01 2.720578 2.57e-01
fhs 2.176202 1.40e-01 4.466326 1.07e-01

Across assets, all VaR models pass both the coverage and independence tests for META and
JPM, indicating that their VaR and ES forecasts are statistically consistent with observed losses. In
contrast, every model fails for AAPL, indicating an underestimation of the tail risk. We identify

whether failures come from biased coverage or clustered exceptions by checking which test rejects the
null: Kupiec detects incorrect violation frequency, while Christoffersen’s independence test reveals
clustering, combining both indicates full model adequacy.

Since AAPL fails both the unconditional coverage test and the joint conditional coverage test for
each methods, this confirms biased coverage, indicating that the models systematically underestimate
its tail risk captured.

3.B Acerbi and Székely

Expected Shortfall is harder to backtest than VaR because ES measures the average severity of tail
losses, not the frequency of exceptions. Since ES corresponds to the conditional mean of losses beyond
the VaR , we cannot validate it simply by counting breaches, as it is done in VaR backtesting.

Acerbi and Székely use the following identity of ES for their backtesting procedure: ESα,t =
−E [Xt |Xt + V aRα,t < 0] . They define an indicator function that flags the days on which the VaR

is breached, and then analyse the distribution of realized losses on those breach days.
The core idea of the test is to compare the realized tail losses with the ES forecasts under a correctly

specified model. To obtain the reference (null) distribution, they generate losses using the samplign
distrubiton of the null model. The realised Z-statistic is then compared with the simulated distribu-
tion. So the null hypothesis is that our model is correctly specified. The test is one-sided because

only underestimating Expected Shortfall is a real problem: if ES is too low, the model underestimates
tail risk and leads to insufficient capital, whereas overestimating ES is simply conservative and not
considered a failure. To conduct Acerbi and Székely test, for each method we created a sampler that

sample from the model distribution M samples for the Monte carlo simulation. By conducting Acerbi
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and Székely test we obtained the following results :

Z1 stat Pvalue ES backtest
Ticker Method

AAPL historical 0.017973 3.64e-01
gaussian 0.166928 0.00e+00
student -0.027741 5.52e-01
parametric 0.003810 4.54e-01
fhs -0.114048 9.74e-01

META historical 0.057958 2.63e-01
gaussian 0.241137 0.00e+00
student 0.043681 2.70e-01
parametric 0.104055 2.00e-02
fhs 0.082961 2.40e-01

JPM historical 0.104375 1.61e-01
gaussian 0.534150 0.00e+00
student 0.299156 3.50e-02
parametric 0.343861 0.00e+00
fhs 0.090146 3.01e-01

For AAPL, only the Gaussian ES model fails the Z1 test, with a p-value of 0, indicating that the
Gaussian assumption systematically underestimates tail severity. All other models exhibit p-values
above 5%, indicating that their ES estimates are statistically compatible with the realized tail losses.

For META, the Gaussian model fails, with a very small p-value of 0, indicating that the Gaussian
assumption systematically underestimates tail severity. The conditional parametric model also fails
with a p-value of 2 · 10−2 All other models exhibit p-values above 5% showing no statistical evidence
of ES misspecification.

For JPM, the Gaussian model has p-value 0 and the parametric model 0 and the student model
3.50 · 10−2 both fail the Z1 test. These models underpredict the magnitude of extreme losses. The
historical and FHS models pass, indicating that their ES forecasts align with realized tail behavior.

Across the three assets, the results show that ES model performance is strongly asset dependent,
reflecting differences in tail behaviour across return distributions. A common pattern is that the Gaus-
sian model systematically fails for all assets, confirming that its thin-tailed distributional assumption
leads to persistent underestimation of extreme losses. However, the fact that different models fail for
different assets highlights that the appropriateness of an ES model depends critically on asset-specific
tail dynamics. Notably, the filtered historical simulation performs well across all cases, suggesting
that its semi-parametric structure offers robust flexibility in practice.
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4 Exercise 4

Copulas and Their Purpose

In multivariate modelling, it is often useful to separate the marginal behaviour of each variable from
the dependence structure that links them. A copula provides exactly this decomposition. By Sklar’s
theorem, any multivariate distribution F with marginals F1, . . . , Fd can be written as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ,

where C is a copula: a multivariate distribution on [0, 1]d with uniform marginals.
This representation allows us to model the marginal distributions Fi independently from depen-

dence structure encoded by the copula C.

In financial applications, this flexibility is valuable because returns often exhibit heavy tails and
skewness, while dependence may be nonlinear or exhibit tail co-movements. Gaussian and Student-t
copulas are widely used examples: the Gaussian copula captures linear dependence through a correla-
tion matrix, whereas the Student-t copula additionally allows for joint extreme events via its degrees
of freedom.

In this exercise, we use copulas to isolate the dependence between AAPL, META, and JPM, fit
parametric copula models to this structure, and generate simulated return series that preserve both
the empirical marginals and the estimated dependence.

4.A Pseudo-observations

We begin by extracting the first estimation window (W = 252 observations) of daily log-returns for
AAPL, META, and JPM. For each asset i and time t, we construct pseudo-observations using

Ut,i =
rank(Rt,i)

W + 1
,

where the ranking is applied column-wise. This transformation produces approximately uniform vari-
ables on (0, 1) while preserving only the dependence structure.

Figure 8 shows the raw return pairs alongside their pseudo-observation counterparts. AAPL-
META exhibits clear positive dependence in both spaces, while pairs involving JPM show weaker
association.
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Figure 8: Raw returns (top row) and pseudo-observations (bottom row) for each asset pair.

Raw returns The AAPL-META pair exhibits a clear upward-sloping cloud, indicating a positive
dependence and frequent joint large moves. In contrast, AAPL-JPM and META-JPM show more
diffuse scatter patterns, reflecting weaker dependence between tech firms and a bank. Across all pairs,
extreme returns are more dispersed than expected under normality, suggesting heavy-tailed behavior
and occasional simultaneous large shocks.

Copula space In copula space, AAPL-META displays a marked diagonal structure, confirming
a positive dependence. The clustering of observations near the corners (0, 0) and (1, 1) further reveals
tail dependence, meaning that extreme moves tend to occur together. By comparison, AAPL-JPM
and META-JPM resemble an almost uniform cloud over [0, 1]2, confirming weaker dependence and
only marginal tail co-movement.

Implications for copula choice Given the evident heavy tails and clear tail dependence inAAPL-
META, a Gaussian copula, though adequate for symmetric dependence, cannot capture the probabil-
ity mass in the joint extremes. The Student-t copula, however, explicitly models tail dependence and
is therefore the appropriate copula for this portfolio. Its structure aligns with the empirical behavior
of the assets, particularly the strong, tail-driven co-movements between the two tech stocks. Conse-
quently, the Student-t copula provides a more realistic representation of joint downside risk than its
Gaussian counterpart.

4.B Fit the copulas

We fit a Gaussian copula and a Student-t copula to the pseudo-observations via maximum likelihood.
Given pseudo-observations U = (Ut,1, Ut,2, Ut,3), the log-likelihood of a copula Cθ with parameter
vector θ is

ℓ(θ) =
W∑
t=1

log cθ(Ut,1, Ut,2, Ut,3),

where cθ is the copula density. The fitting procedure consists of maximizing ℓ(θ) with respect to the
dependence parameters (the correlation matrix, and additionally ν for the Student-t copula). Since
the marginals are already transformed into uniforms, the estimation focuses purely on the dependence
structure.
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Gaussian copula. The Gaussian copula is parametrized solely by its 3× 3 correlation matrix. The
estimated correlation matrix and log-likelihood of ≈ 69 are obtained from the fitted model. With
d = 3 assets, the Gaussian copula has 3 free parameters.

Student-t copula. The Student-t copula has the same correlation matrix as the Gaussian copula
but includes an additional degrees-of-freedom parameter ν (making it a total of 4 parameters), which
controls tail dependence. In our fit, we estimated ν ≈ 13, indicating moderately heavy joint tails.
The Student-t copula achieves a slightly higher log-likelihood of ≈ 70, consistent with the mild tail
clustering observed in the data.

Correlation matrix.

ΣGaussian =

AAPL META JPM( )AAPL 1.0000 0.2870 0.3428
META 0.2870 1.0000 0.5979
JPM 0.3428 0.5979 1.0000

ΣStudent-t =

AAPL META JPM( )AAPL 1.0000 0.3021 0.3494
META 0.3021 1.0000 0.5995
JPM 0.3494 0.5995 1.0000

4.C Simulate from the copulas

Using the fitted copulas, we generate T synthetic observations for each asset. The simulation relies
on the fundamental copula identity

F (x1, . . . , xd) = Cθ(F1(x1), . . . , Fd(xd)) ,

which implies that any joint sample can be obtained by first simulating the dependence (through the
copula) and then restoring the marginal distributions through inverse CDFs.

Step 1: simulate uniforms. For each t = 1, . . . , T , we draw a vector of uniforms

U (t) = (U
(t)
1 , U

(t)
2 , U

(t)
3 ) ∼ Cθ,

where Cθ is the fitted Gaussian or Student-t copula. These uniforms encode *only the dependence

structure*: individually, U
(t)
i ∼ U(0, 1), but jointly they reproduce the correlations or tail dependence

implied by the fitted copula.

Step 2: inverse empirical CDFs. For each asset i, we construct its empirical inverse CDF F̂−1
i

from the observed returns by sorting the data and performing monotone interpolation. Each simulated
uniform is then transformed as

X
(t)
i = F̂−1

i

(
U

(t)
i

)
.

This step ensures that the simulated values X
(t)
i follow the same marginal distribution as the

historical returns of asset i, regardless of the copula chosen. In particular, this approach reproduces
skewness, kurtosis, and heavy tails present in the empirical data without assuming any parametric
marginals.
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Step 3: comparison. Figure 9 compares the simulated and original marginal distributions. Both
copulas reproduce the empirical marginals very closely.

Figure 9: Comparison of original vs. copula-simulated marginal distributions (Gaussian and Student-
t).

Figure 10 compares the pairwise dependence in the original and simulated datasets. The Gaussian
copula captures the overall dependence well, while the Student-t copula produces slightly stronger
joint extremes, though the effect is moderate due to the fitted degrees of freedom relatively moderate.
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Figure 10: Dependence structure of original returns vs. Gaussian and Student-t copula simulations.

Figure 11 compares the evolution of the original return series with those generated by the Gaussian
and Student-t copulas. Both copulas reproduce the short-term fluctuations around zero observed
in the empirical returns. The Gaussian copula yields smoother trajectories with fewer pronounced
peaks, reflecting its tendency to underestimate tail events. In contrast, the Student-t copula produces
occasional large spikes and clusters of heightened volatility, more closely resembling the empirical
behavior of financial returns and capturing heavy-tailed dynamics. This difference is particularly
visible for META, where the Student-t simulations exhibit sequences of large movements indicative of
volatility clustering.
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Figure 11: Time-series comparison of simulated returns vs. original returns

Overall, both copulas generate realistic synthetic returns that successfully replicate the empirical
marginal distributions and preserve the dependence structure estimated in the first window. However,
the Student-t copula offers a more faithful reproduction of extreme events and volatility clustering,
making it better suited for scenarios involving risk analysis or stress testing, where accurate modeling
of tail behavior is crucial.

5 Exercise 5

5.A Univariate models

We construct an equal-weighted portfolio of the three assets,

Rport
t =

1

3
RAAPL

t +
1

3
RMETA

t +
1

3
RJPM

t ,

and compute its daily log-returns over the full sample. The resulting series has mean 0.00165 and
standard deviation 0.0142, with extremes ranging from −8.8% to +11.9%.
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We evaluate several univariate risk models on the portfolio loss series Lport
t = −Rport

t , using the
same rolling-window setup as in Exercise 3 (W = 252 days). For each method and each confidence
level 1− α ∈ {0.95, 0.99}, we compute one-step-ahead forecasts of VaRα and ESα:

We evaluate five univariate risk models: Historical Simulation (HS), a Gaussian parametric model,
a Student-t parametric model, a conditional parametric model (GARCH with Gaussian innovations),
and Filtered Historical Simulation (FHS).

The resulting VaR and ES sequences are backtested using the Kupiec Proportion-of-Failures (POF)
test, the Christoffersen independence test (serial independence of violations) which we use to imple-
ment the Conditional Coverage tests. Finally, we use the Z1 ES backtest based on simulated p-values.

95% 99%
Method VaR POF VaR CC ES Z1 VaR POF VaR CC ES Z1

Historical ✓ ✓ × × × ✓
Gaussian ✓ ✓ × × × ×
Student-t ✓ ✓ ✓ × × ✓
Parametric (GARCH) ✓ ✓ × ✓ ✓ ✓
FHS ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Combined backtesting results for portfolio VaR and ES (univariate models). A checkmark
denotes failure to reject the null hypothesis at the 5% significance level.

Confidence Level Method
POF p-value CC p-value ES Z1 stat ES p-value

95%

historical 0.1436 0.2264 0.1641 0.0190
gaussian 0.1436 0.2264 0.3136 0.0000
student 0.0587 0.1326 0.1785 0.0630
parametric 0.3061 0.3064 0.1465 0.0020
fhs 0.5673 0.6757 0.0598 0.2170

99%

historical 0.0067 0.0141 0.0576 0.2300
gaussian 0.0002 0.0006 0.2675 0.0050
student 0.0021 0.0056 -0.0189 0.3870
parametric 0.0523 0.1280 0.1151 0.0760
fhs 0.1263 0.2722 -0.0336 0.8100

Table 5: Backtesting results for univariate portfolio models. POF = Kupiec proportion of failures
test; CC = Christoffersen conditional coverage test; ES = Expected Shortfall Z1 backtest.

At the 95% confidence level, all models successfully pass the VaR backtests. However, at the
more stringent 99% level, the pure historical and simple parametric specifications (Gaussian and
Student-t) fail both Kupiec and Christoffersen tests, confirming their inability to accurately capture
tail risk. In contrast, dynamic and volatility sensitive approaches, namely the conditional GARCH
model and Filtered Historical Simulation (FHS), display markedly superior performance, passing both
VaR diagnostics across confidence levels.

Expected Shortfall forecasts, evaluated using the Acerbi-Szekely Z1 backtest, exhibit a similar
pattern. While Gaussian-based ES forecasts systematically fail, heavy-tailed or conditional models
(Student-t, GARCH, and especially FHS) generally produce statistically consistent ES estimates,
indicating a more reliable characterization of downside risk.

The backtesting results demonstrate that static or distributionally simplistic models are inadequate
for high-confidence risk estimation on this portfolio. Models that account for time-varying volatility
or tail dependence, in particular GARCH and FHS, provide materially more robust risk forecasts,
validating their use in environments where accurate extreme-loss modeling is essential.
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5.B Copulas

We next estimate portfolio VaR and ES using multivariate dependence models. At each time t ≥ W
(with W = 252), we fit a Gaussian and a Student-t copula to the pseudo-observations of AAPL,
META, and JPM over the most recent window. The fitted copulas capture the cross-asset dependence
structure for that period.

Intuition. The copula approach generates many plausible future market scenarios by combining the
dependence structure between assets with their empirical marginal distributions. The fitted copula
produces correlated uniform random variables that encode how the three assets tend to co-move,
including the possibility of joint extremes (in the Student-t case). Each uniform component is then
mapped through the empirical inverse CDF of the corresponding asset, ensuring that the simulated
returns follow the same marginal behavior as in the historical window. This yields realistic joint return
scenarios from which portfolio losses can be computed.

Simulation and risk estimation. For each copula, we simulate Nsim = 1000 joint scenarios

U (m) ∼ Cθ, m = 1, . . . , Nsim,

and transform the components via

X
(m)
i = F̂−1

i (U
(m)
i ).

This produces simulated returns with the correct marginals and copula-based dependence. Portfolio
returns are then computed using the equal-weight vector w = (13 ,

1
3 ,

1
3), and simulated losses

L(m) = −w⊤X(m)

yield Monte Carlo estimates of VaR and ES at confidence levels 1− α ∈ {0.95, 0.99}.
Results are discussed in the next subsection 5.C.

5.C Backtesting and Comparison

We now compare the out-of-sample performance of all portfolio risk models: both univariate and
copula-based using the VaR and ES forecasts obtained in the previous subsections. The evaluation
covers the final 370 days of the sample, corresponding to the rolling-window setup with W = 252.
The main results are shown in Figure 12.

VaR at 95% VaR at 99% ES
Method POF CC POF CC 95% 99%

Gaussian Copula ✓ ✓ × × × ✓
Student-t Copula ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Backtesting results for copula-based portfolio models. A checkmark denotes failure to reject
the null hypothesis at 5%.
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Figure 12: Summary table of VaR and ES backtesting statistics for all univariate and copula-based
models at the 95% and 99% confidence levels.

Figure 13: Violation rates for univariate and copula-based VaR forecasts at 95% and 99% confidence.

Interpretation of Copula-Based Backtesting Results. At the 95% confidence level, the Fig-
ure 13 shows that both Gaussian and Student-t copulas exhibit violation rates that exceed the theo-
retical benchmark, performing similarly to or slightly worse than several univariate methods. At the
99% level, copula models show a modest improvement relative to some univariate approaches; how-
ever, their violation rates remain above the expected threshold, indicating persistent underestimation
of tail risk. In contrast, univariate models that account for time-varying volatility, in particular the
Filtered Historical Simulation (FHS) and parametric GARCH, achieve violation rates closest to the
theoretical expectations across both confidence levels. This suggests that, for our particular portfolio
and the period under study, modeling temporal dependence and volatility clustering is more impactful
for accurate risk measurement than modeling cross-sectional dependence alone.
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Figure 14: Time series of portfolio VaR forecasts (Part 1).
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Figure 15: Time series of portfolio VaR forecasts (Part 2).

Figures 14 and 15 present the rolling VaR estimates alongside realized portfolio losses for all
considered models. A visual inspection reveals that copula-based approaches do not systematically
outperform univariate models such as FHS or GARCH-type specifications. Although copulas provide
a more flexible framework to model cross-sectional dependence, their VaR curves often remain too
smooth and fail to adjust rapidly during periods of heightened volatility. As a result, copula-based VaR
estimates are frequently exceeded during market stress, leading to a substantial number of violations.

In contrast, univariate methods that explicitly incorporate time-varying volatility, particularly
FHS, tend to align more closely with the observed loss dynamics. These models react more promptly
to volatility bursts and adjust their risk estimates accordingly, which explains their lower violation
frequencies. This behavior is especially visible during the sharp increase in losses towards the end of the
sample: while FHS-based VaR rapidly escalates to reflect the changing risk environment, copula-based
VaR remains comparatively muted and is repeatedly breached.
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Figure 16: Time series of portfolio ES forecasts (Part 1).
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Figure 17: Time series of portfolio ES forecasts (Part 2).

Figures 16 and 17 display the rolling Expected Shortfall (ES) forecasts together with realized
portfolio losses for all risk models. Similar to the VaR analysis, the copula-based approaches do
not demonstrate a clear performance advantage over univariate methods. Although ES is a coherent
risk measure and theoretically more sensitive to tail events, the copula-based ES estimates remain
relatively stable throughout the sample and fail to escalate during periods of heightened market
stress. Consequently, several realized losses exceed the copula-based ES thresholds, indicating that
these models tend to underestimate tail risk.

By contrast, univariate models that incorporate time-varying volatility, particularly the Filtered
Historical Simulation (FHS) and, to a lesser extent, parametric GARCH-type, provide more reactive
ES estimates. These methods adjust rapidly to volatility bursts, producing higher ES values when
market conditions deteriorate. This dynamic behavior results in fewer ES breaches, especially in the
latter part of the sample, where the portfolio experiences the most extreme losses. The responsiveness
of FHS to evolving volatility patterns highlights the importance of modeling temporal dependence and
volatility clustering when forecasting downside risk.
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Conclusion. The objective of this analysis was to assess whether dependence modeling improves
portfolio risk estimation. While copula-based approaches explicitly capture the cross-sectional de-
pendence structure between assets, the empirical results do not provide clear evidence of superior
performance compared to univariate models.

An explanation for these findings lies in the characteristics of the underlying portfolio. The three
assets considered do not exhibit pronounced dependence, which limits the potential gains from employ-
ing copula-based models. In such a context, explicitly modeling cross-sectional dependence offers little
improvement. Moreover, copulas do not account for volatility clustering or sudden volatility bursts if
we give them simple Gaussian or Student-t marginals, unlike FHS and GARCH. Since extreme losses
during the sample period appear to be primarily driven by volatility dynamics rather than dependence
structures, correctly modeling time-varying volatility proves more important than capturing marginal
dependence. Consequently, the relative underperformance of copula-based methods is consistent with
the underlying data-generating process and the nature of the portfolio risk.

Therefore, we cannot conclude that dependence modeling via copulas systematically improves the
results. Copula-based methods do not outperform well-specified univariate models such as FHS, and
their benefits become visible only at extreme confidence levels without consistently translating into
better backtesting outcomes. While copulas generally perform better than some simpler univariate
approaches, this incremental improvement remains insufficient to claim superiority over methods that
explicitly model volatility dynamics. As a result, the evidence does not support the claim that copulas
provide superior VaR or ES estimates in this setting.

A Code Appendix

# %% [markdown]

# # Project 1: Market Risk - VaR, ES, and Copulas

# %% [markdown]

# **Names of all group members:**

# - William Jallot (william.jallot@epfl.ch)

# - Matthias Wyss (matthias.wyss@epfl.ch)

# - Antoine Garin (antoine.garin@epfl.ch)

#

# ---

# %% [markdown]

# ## 0 - Setup

#

# Creates necessary folders and sets hyperparameters for the project.

# %%

# If a package import fails, install it in your environment, e.g.:

# %pip install yfinance arch copulae statsmodels seaborn

import os

import numpy as np

import copulae

import pandas as pd

import scipy.stats as stats

from pathlib import Path

from itertools import combinations

from statsmodels.graphics.tsaplots import plot_acf, plot_ccf, plot_pacf

from IPython.display import clear_output

from scipy.stats import chi2

from statsmodels.tsa.ar_model import AutoReg

from arch import arch_model

from scipy.stats import norm

import matplotlib.patches as mpatches
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from matplotlib.patches import Patch

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings(’ignore’)

# your own script with helper functions, if any

# import utils as U

# Locate the Project 1 directory to this notebook’s working directory

PROJECT_DIR = Path.cwd()

DATA_DIR = PROJECT_DIR / ’data’

OUT_DIR = PROJECT_DIR / ’output’

for d in [DATA_DIR, OUT_DIR]:

d.mkdir(parents=True, exist_ok=True)

# Parameters

TICKERS = [’AAPL’, ’META’, ’JPM’]

START = ’2023-01-01’

END = ’2025-06-30’

WINDOW = 252

CONFIDENCE = [0.95, 0.99]

np.random.seed(0)

print(’Project␣dir:’, PROJECT_DIR)

print(’Output␣->’, OUT_DIR)

# %% [markdown]

# Download and save Adjusted Close for the tickers over the given range into ‘data/‘ (CSV

per ticker).

# %%

import yfinance as yf

print(’Downloading␣data␣to’, DATA_DIR)

for t in TICKERS:

print(f’␣␣->␣{t}’)

df = yf.download(t, start=START, end=END, progress=False, auto_adjust=False)

if df.empty:

print(f’␣␣␣␣␣Warning:␣no␣data␣for␣{t}’)

continue

out = df.reset_index()

out = out[[’Date’, ’Adj␣Close’]]

out.to_csv(DATA_DIR / f’{t}.csv’, index=False)

print(’Done.’)

# %% [markdown]

# Now, load the data back from CSVs

# %%

files = [f for f in os.listdir(DATA_DIR) if f.lower().endswith(’.csv’)]

frames = []

for f in files:

p = os.path.join(DATA_DIR, f)

df = pd.read_csv(p, parse_dates=[’Date’])

df = df[[’Date’, ’Adj␣Close’]]

# Coerce to numeric and drop malformed rows

df[’Adj␣Close’] = pd.to_numeric(df[’Adj␣Close’], errors=’coerce’)
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df = df.dropna(subset=[’Date’, ’Adj␣Close’])

df = df.rename(columns={’Adj␣Close’: f.split(’.’)[0]})

df = df.set_index(’Date’).sort_index()

frames.append(df)

prices = pd.concat(frames, axis=1).dropna(how=’all’)

print(prices.head(15))

# %% [markdown]

# ## 1 - Empirical stylized facts

# %% [markdown]

# - a. Construct log-returns for AAPL, MSFT, JPM; plot series and comment on trends/

volatility.

# - b. Estimate correlation functions of returns and absolute returns across assets and

lags 025; comment.

# - c. QQ plots vs Normal; perform JarqueBera test and discuss normality.

# %% [markdown]

# ### a. Log-returns and plots

# %%

log_returns = np.log(prices).diff().dropna()

# Non-overlapping weekly returns: resample to weekly (Friday close) then compute log returns

# weekly_prices = prices.resample(’W-FRI’).last()

# weekly_log_returns = np.log(weekly_prices / weekly_prices.shift(1)).dropna()

fig, axs = plt.subplots(len(TICKERS), 1, figsize=(10, 3 * len(TICKERS)))

for i, ticker in enumerate(TICKERS):

log_returns[ticker].plot(ax=axs[i], title=f"Log␣returns␣-␣{ticker}")

axs[i].set_ylabel("Log␣return")

plt.tight_layout()

plt.savefig(os.path.join(OUT_DIR, f"log_returns_all.png"))

plt.show()

# %% [markdown]

# Log-returns show no persistent trend (mean around zero).

# Volatility clusters show us that META has the highest volatility, AAPL is moderate, and

JPM is the lowest.

# %% [markdown]

# ### b. Cross-correlation and autocorrelation functions

# %%

lags = 25

# ACF align per asset only

fig_acf, axs_acf = plt.subplots(2, len(TICKERS), figsize=(5*len(TICKERS), 8), sharex=True,

sharey=True)

for j, asset in enumerate(TICKERS):

s = log_returns[asset].dropna()

plot_acf(s, lags=lags, ax=axs_acf[0, j])

axs_acf[0, j].set_title(f"{asset}")

axs_acf[0, j].axhline(0, lw=1, color="k", alpha=0.7)

plot_acf(s.abs(), lags=lags, ax=axs_acf[1, j])

axs_acf[1, j].set_title(f"|{asset}|")

axs_acf[1, j].axhline(0, lw=1, color="k", alpha=0.7)
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for ax in axs_acf.flat:

ax.set_xlabel("Lag␣h")

ax.set_ylabel("Correlation")

ax.set_ylim(-0.5, 1.1)

fig_acf.suptitle("Autocorrelation␣(returns␣and␣absolute␣returns)", y=1.02)

fig_acf.tight_layout()

fig_acf.savefig(os.path.join(OUT_DIR, "acf_returns_abs_returns.png"))

# CCF - align per pair

pairs = list(combinations(TICKERS, 2)) # We use combinations to avoid duplicate pairs (A,B)

and (B,A) for cross-correlation

fig_ccf, axs_ccf = plt.subplots(2, len(pairs), figsize=(5*len(pairs), 8), sharex=True,

sharey=True)

for j, (n, m) in enumerate(pairs):

# raw returns for direction Corr(n_t, m_{t-h})

xy = log_returns[[n, m]].dropna()

x, y = xy[n], xy[m]

plot_ccf(x, y, lags=lags, ax=axs_ccf[0, j])

axs_ccf[0, j].set_title(f"{n}␣vs␣{m}")

axs_ccf[0, j].axhline(0, lw=1, color="k", alpha=0.7)

# absolute returns: take abs on raw series

xa, ya = x.abs(), y.abs()

plot_ccf(xa, ya, lags=lags, ax=axs_ccf[1, j])

axs_ccf[1, j].set_title(f"|{n}|␣vs␣|{m}|")

axs_ccf[1, j].axhline(0, lw=1, color="k", alpha=0.7)

for ax in axs_ccf.flat:

#ax.set_xlim(0, lags)

ax.set_xlabel("Lag␣h")

ax.set_ylabel("Correlation")

ax.set_ylim(-0.5, 1.1)

fig_ccf.suptitle("Cross-correlation␣(returns␣and␣absolute␣returns)", y=1.02)

fig_ccf.tight_layout()

fig_ccf.savefig(os.path.join(OUT_DIR, "ccf_returns_abs_returns.png"))

plt.show()

# %% [markdown]

# The autocorrelation of log returns for AAPL, META, and JPM shows almost no correlation

after lag 0. This indicates that past returns have little predictive power for future

returns, confirming the weak linear dependence typical of stock prices.

#

# Absolute returns exhibit stronger but still week autocorrelations, with lag 1 correlations

around 0.2 for AAPL.

#

# Cross-correlations between different stocks log returns are moderate at lag 0 (roughly

0.27-0.41) and decay quickly for higher lags. This suggests some contemporaneous co-

movement across assets, particularly between AAPL and META, but limited predictive

influence across weeks.

#

# Cross-correlations of absolute returns are weaker than the autocorrelations of absolute

returns, typically ranging from 0.05 to 0.15 at lag 0. However, they remain positive for

most lags, indicating modest volatility spillover across assets.
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# %% [markdown]

# ### c. QQ plots and normality tests

# %%

n_assets = len(log_returns.columns)

jarque_bera_results = {}

fig, axes = plt.subplots(n_assets, 1, figsize=(8, 3*n_assets))

for i, ticker in enumerate(log_returns.columns):

stats.probplot(log_returns[ticker], dist="norm", plot=axes[i])

axes[i].set_title(f"Normal␣QQ-Plot:␣{ticker}")

jarque_bera_results[ticker] = stats.jarque_bera(log_returns[ticker])

fig.tight_layout()

fig.savefig(os.path.join(OUT_DIR, "qq_plots.png"))

fig.show()

# %% [markdown]

# We can see that across the three assets, the resolut of the QQ plot exhibit the same ’

shape’. At the two extremes of the 45 degree line, the theoritical quantiles are below

on the left and above on the right. This means our log returns are left skewed (long

negative tail) and are fat tailed.

# %% [markdown]

# The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching

a normal distribution. It tests, if we can reject the null hypothesis that our returns

are normally distributed. If we want to test at 5% level of significance, in case our

$p_\text{value}$, the lowest significance at which you can reject, if it is lower than

5% we would reject normality.

#

#

# %%

for ticker, result in jarque_bera_results.items():

jb_stat, jb_pvalue = result[0], result[1]

print(f"Jarque-Bera␣test␣for␣{ticker}:")

print(f"␣␣JB␣Statistic:␣{jb_stat:.4f}")

print(f"␣␣p-value:␣{jb_pvalue:.4f}")

if jb_pvalue < 0.05:

print("␣␣=>␣Reject␣the␣null␣hypothesis␣of␣normality␣at␣the␣5%␣significance␣level.\n"

)

else:

print("␣␣=>␣Fail␣to␣reject␣the␣null␣hypothesis␣of␣normality␣at␣the␣5%␣significance␣

level.\n")

# %% [markdown]

# ## 2 - First-window modeling: VaR, ES, and distributions

# %% [markdown]

# Use the first estimation window $W=252$ days on each asset separately with losses $L_t$ =

$R_t$.
# Compare:

#

# - Historical,

# - Gaussian,

# - Student-t,

# - AR(p)+GARCH(1,1) with Normal/Student-t,

# - Filtered Historical Simulation (FHS).
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# %% [markdown]

# We use the first estimation window of length W = 252 days (~1 trading year) for each asset

separately.

# Losses are defined as $L_t = -R_t$, so the right tail corresponds to risk.

#

# ### a. Historical Simulation (Empirical CDF)

#

# The **empirical cumulative distribution function (CDF)** of losses is:

#

# $$
# \hat{F}_L(x) = \frac{1}{W} \sum_{t=1}^W \mathbf{1}_{\{L_t \le x\}}

# $$
#

# - **Value-at-Risk (VaR)** at confidence level $\alpha$:
#

# $$
# \text{VaR}_\alpha = \inf \{ x : \hat{F}_L(x) \ge \alpha \}

# $$
#

# - **Expected Shortfall (ES)**:

#

# $$
# \text{ES}_\alpha = \mathbb{E}[L_t \mid L_t \ge \text{VaR}_\alpha] \approx \text{mean of

losses VaR}_\alpha

# $$
#

# **Notes:**

# - Non-parametric approach: no assumption on the loss distribution.

# - Directly based on historical data.

#

# ---

# %%

def historical_simulation(L, confidence_levels) :

VaR_hist = {a: np.quantile(L, a) for a in confidence_levels}

ES_hist = {a: L[L >= VaR_hist[a]].mean() for a in confidence_levels}

out = {

"VaR": {},

"ES": {}

}

for a in confidence_levels:

out["VaR"][a] = VaR_hist[a]

out["ES"][a] = ES_hist[a]

return out

# We will need this later for Monte Carlo simulations

def historical_sampler(L, M) :

return np.random.choice(L, replace=True, size=M)

# %% [markdown]

# ### b. Gaussian (Normal) Distribution

#

# Assume losses are **normally distributed**:

#

# $$
# L_t \sim \mathcal{N}(\mu, \sigma^2)

# $$
#

# where:

#
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# $$
# \mu = \text{mean}(L), \quad \sigma = \text{std}(L)

# $$
#

# - **Value-at-Risk (VaR)**:

#

# $$
# \text{VaR}_\alpha = \mu + \sigma \cdot z_\alpha

# $$
#

# where $z_\alpha = \Phi^{-1}(\alpha)$ is the $\alpha$-quantile of the standard normal

distribution.

#

# - **Expected Shortfall (ES)**:

#

# $$
# \text{ES}_\alpha = \mu + \sigma \frac{\phi(z_\alpha)}{1-\alpha}

# $$
#

# with $\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$, the standard normal density.

#

# **Notes:**

# - Closed-form formulas make Gaussian VaR/ES fast to compute.

# - Limitation: does not capture fat tails in the loss distribution.

#

# ---

#

# %%

def gaussian_normal_distribution(L, confidence_levels) :

mu, sigma = norm.fit(L)

VaR_gauss = {a: mu + sigma * norm.ppf(a) for a in confidence_levels}

ES_gauss = {a: mu + sigma * norm.pdf(norm.ppf(a)) / (1 - a) for a in confidence_levels}

out = {

"mu": mu,

"sigma": sigma,

"VaR": {},

"ES": {}

}

for a in confidence_levels:

out["VaR"][a] = VaR_gauss[a]

out["ES"][a] = ES_gauss[a]

return out

# We will need this later for Monte Carlo simulations

def gaussian_sampler(L, M) :

mu, sigma = norm.fit(L)

return np.random.normal(loc=mu, scale=sigma, size=M)

# %% [markdown]

# ### c. Student-t Distribution

#

# Assume losses follow a **Student-t distribution**:

#

# $$
# L_t \sim t_\nu(\mu, \sigma)

# $$
#

# where:

# - $\nu$ = degrees of freedom (controls tail thickness)
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# - $\mu$ = location parameter

# - $\sigma$ = scale parameter

#

# - **Value-at-Risk (VaR)** at confidence level $\alpha$:
#

# $$
# \text{VaR}_\alpha = \mu + \sigma \cdot t_\nu^{-1}(\alpha)

# $$
#

# where $t_\nu^{-1}(\alpha)$ is the $\alpha$-quantile of the standard Student-t with $\nu$
degrees of freedom.

#

# - **Expected Shortfall (ES)** for $\nu > 1$:
#

# $$
# \text{ES}_\alpha = \mu + \sigma \frac{\nu + \big(t_\nu^{-1}(\alpha)\big)^2}{\nu-1} \cdot \

frac{f_\nu(t_\nu^{-1}(\alpha))}{1-\alpha}

# $$
#

# where $f_\nu(\cdot)$ is the standard Student-t density.

#

# **Impact of $\nu$:**
# - Small $\nu$ fatter tails higher VaR and ES (more conservative estimates)

# - Large $\nu$ approaches normal distribution VaR/ES similar to Gaussian

#

# **Notes:**

# - Student-t captures extreme losses better than Gaussian due to fat tails.

# - VaR and ES depend strongly on the estimated degrees of freedom $\nu$.
#

# %%

from scipy.stats import t

def student_var_es(L, confidence_levels) :

nu, mu_t, sigma_t = t.fit(L)

VaR_t = {a: mu_t + sigma_t * t.ppf(a, nu) for a in confidence_levels}

ES_t = {a: mu_t + sigma_t * (nu + (t.ppf(a, nu))**2)/(nu - 1) * t.pdf(t.ppf(a, nu), nu)

/(1 - a) for a in confidence_levels}

out = {

"VaR": {},

"ES": {}

}

for a in confidence_levels:

out[’nu’] = nu

out[’mu_t’] = mu_t

out[’sigma_t’] = sigma_t

out["VaR"][a] = VaR_t[a]

out["ES"][a] = ES_t[a]

return out

# We will need this later for Monte Carlo simulations

def student_sampler(L, M) :

nu, mu_t, sigma_t = t.fit(L)

return t.rvs(df=nu, loc=mu_t, scale=sigma_t, size=M)

# %% [markdown]

# ### d. Conditional parametric

# %%

n_assets = len(TICKERS)
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fig, axes = plt.subplots(n_assets, 1, figsize=(8, 4 * n_assets))

for i, asset in enumerate(TICKERS):

plot_pacf(

log_returns[asset],

lags=lags,

ax=axes[i],

title=f’PACF␣{asset}’

)

axes[i].set_ylim(-0.5, 1.1)

plt.tight_layout()

plt.savefig(os.path.join(OUT_DIR, "pacf_plots.png"))

# %% [markdown]

# After lag 0, most values fluctuate around zero and are within the blue confidence band so

we should use an AR(0) model, a pure noise model.

# %%

def conditional_parametric_var_es(L, confidence_levels) :

res_mean = AutoReg(L, lags=0).fit()

eps = res_mean.resid

garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, q=1)

res_vol = garch.fit(show_warning=False, disp=’off’)

vol_forecast = res_vol.forecast(horizon=1)

sigma_forecast = np.sqrt(vol_forecast.variance.values[-1, 0])

mean_forecast = res_mean.predict(start=len(L), end=len(L))

VaR_parametric = {a: mean_forecast.values[0] + sigma_forecast * norm.ppf(a) for a in

confidence_levels}

ES_parametric = {a: mean_forecast.values[0] + sigma_forecast * norm.pdf(norm.ppf(a)) /

(1 - a) for a in confidence_levels}

out = {

"VaR": {},

"ES": {},

"mu_forecast": mean_forecast,

"sigma_forecast": sigma_forecast

}

for a in confidence_levels:

out["VaR"][a] = VaR_parametric[a]

out["ES"][a] = ES_parametric[a]

return out

# We will need this later for Monte Carlo simulations

def conditional_parametric_sampler(L, M) :

res_mean = AutoReg(L, lags=0).fit()

eps = res_mean.resid

garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, q=1)

res_vol = garch.fit(show_warning=False, disp=’off’)

vol_forecast = res_vol.forecast(horizon=1)

sigma_forecast = np.sqrt(vol_forecast.variance.values[-1, 0])

mean_forecast = res_mean.predict(start=len(L), end=len(L))

return np.random.normal(loc=mean_forecast, scale=sigma_forecast, size=M)
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# %% [markdown]

# ### e. Filtered Historical Simulation

# %%

def filtered_historical_simulation(L, alpha_levels, M=1000, random_state=0):

"""

␣␣␣␣Filtered␣Historical␣Simulation␣(FHS)␣on␣LOSS␣series␣L.

␣␣␣␣Parameters

␣␣␣␣----------

␣␣␣␣L␣:␣array-like␣or␣pd.Series

␣␣␣␣␣␣␣␣Losses␣(positive␣on␣bad␣days,␣small/possibly␣negative␣on␣good␣days).

␣␣␣␣alpha_levels␣:␣list␣of␣float

␣␣␣␣␣␣␣␣Confidence␣levels,␣e.g.␣[0.95,␣0.99].

␣␣␣␣M␣:␣int

␣␣␣␣␣␣␣␣Number␣of␣Monte␣Carlo␣simulations.

␣␣␣␣"""

L = pd.Series(L).dropna()

# AR(0)

ar = AutoReg(L, lags=0).fit()

eps = ar.resid # residuals of losses

# GARCH(1,1) on residuals

garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, q=1)

garch_res = garch.fit(show_warning=False, disp=’off’)

# Conditional volatility and 1-step-ahead forecast

z_t = garch_res.std_resid

h_t1 = garch_res.forecast(horizon=1).variance.iloc[-1, 0]

sigma_t1 = float(np.sqrt(h_t1))

# One-step-ahead conditional mean of losses

mu_t1 = ar.forecast(steps=1).values[0]

z_star = np.random.choice(z_t, size=M, replace=True)

eps_t1_star = sigma_t1 * z_star

# Simulated next-period losses

L_simulated = mu_t1 + eps_t1_star

# VaR and ES

out = {

"mu_forecast": mu_t1,

"h_forecast": float(h_t1),

"r_sims": L_simulated,

"VaR": {},

"ES": {}

}

for a in alpha_levels:

# a is the confidence level

var_a = np.quantile(L_simulated, a)

tail = L_simulated[L_simulated >= var_a]

es_a = float(tail.mean())

out["VaR"][a] = float(var_a)

out["ES"][a] = es_a
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return out

# We will need this later for Monte Carlo simulations

def fhs_sampler(L, M):

# AR(0) on LOSSES

ar = AutoReg(L, lags=0).fit()

eps = ar.resid

# GARCH(1,1) on residuals

garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, q=1)

garch_fitted = garch.fit(show_warning=False, disp=’off’)

sigma_t = garch_fitted.conditional_volatility

h_t1 = garch_fitted.forecast(horizon=1).variance.values[-1, 0] # variance

sigma_t1 = np.sqrt(h_t1)

# 1-step ahead mean

mu_t1 = ar.forecast(steps=1) # shape (1,)

# Standardized residuals

z_t = eps / sigma_t

# Resampling

e_star = np.random.choice(z_t, size=M, replace=True)

z_t1_star = e_star * sigma_t1

# Simulated next period

r_simulated = mu_t1.ravel() + z_t1_star

return r_simulated

# %%

# Plot PDFs for all tickers in one figure

fig, axes = plt.subplots(len(TICKERS), 1, figsize=(8, 5*len(TICKERS)), sharex=True)

# Dictionaries to store results

VaR_results = []

ES_results = []

for i, ticker in enumerate(TICKERS):

ax = axes[i] # Select subplot

ax.set_xlim(-0.1, 0.1)

# First W observations

L = -log_returns[ticker].iloc[:WINDOW]

# === Historical ===

out_hist = historical_simulation(L, CONFIDENCE)

sns.kdeplot(L, label=’Historical’, bw_method=0.3, ax=ax)

# === Gaussian ===

out_gauss = gaussian_normal_distribution(L, CONFIDENCE)

x = np.linspace(L.min(), L.max(), 200)

ax.plot(x, norm.pdf(x, out_gauss[’mu’], out_gauss[’sigma’]), label=’Gaussian’)

# === Student-t ===

out_t = student_var_es(L, CONFIDENCE)

ax.plot(x, t.pdf((x - out_t[’mu_t’])/out_t[’sigma_t’], out_t[’nu’])/out_t[’sigma_t’],

label=’Student-t’)
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# === Conditional parametric ===

out_parametric = conditional_parametric_var_es(L, CONFIDENCE)

ax.plot(x, norm.pdf(x, out_parametric[’mu_forecast’], out_parametric[’sigma_forecast’]),

label=’Conditional␣Parametric’)

# === Filtered Historical Simulation (FHS) ===

out_fhs = filtered_historical_simulation(L, CONFIDENCE)

sns.kdeplot(out_fhs[’r_sims’], label=’FHS’, bw_method=0.3, ax=ax)

# === Store results ===

for a in CONFIDENCE:

VaR_results.append({

’Ticker’: ticker,

’Alpha’: a,

’Historical’: out_hist[’VaR’][a],

’Gaussian’: out_gauss[’VaR’][a],

’Student-t’: out_t[’VaR’][a],

’Parametric’ : out_parametric[’VaR’][a],

’FHS’: out_fhs[’VaR’][a]

})

ES_results.append({

’Ticker’: ticker,

’Alpha’: a,

’Historical’: out_hist[’ES’][a],

’Gaussian’: out_gauss[’ES’][a],

’Student-t’: out_t[’ES’][a],

’Parametric’ : out_parametric[’ES’][a],

’FHS’: out_fhs[’ES’][a]

})

ax.set_title(f"Estimated␣PDFs␣of␣{ticker}␣Losses")

ax.set_ylabel("Density")

ax.legend()

# Convert results to DataFrames

VaR_df = pd.DataFrame(VaR_results).set_index([’Ticker’, ’Alpha’])

ES_df = pd.DataFrame(ES_results).set_index([’Ticker’, ’Alpha’])

# Format the Alpha index as percentages

VaR_df.index = VaR_df.index.set_levels([VaR_df.index.levels[0],

[f"{int(a*100)}%" for a in VaR_df.index.levels[1]]])

ES_df.index = ES_df.index.set_levels([ES_df.index.levels[0],

[f"{int(a*100)}%" for a in ES_df.index.levels[1]]])

# Display VaR DataFrames

print("===␣Value-at-Risk␣(VaR)␣Results␣===")

display(VaR_df)

# Display ES DataFrames

print("\n===␣Expected␣Shortfall␣(ES)␣Results␣===")

display(ES_df)

# Save and show plots

axes[-1].set_xlabel("Loss")

plt.tight_layout()

plt.savefig(os.path.join(OUT_DIR, "loss_pdfs.png"))

plt.show()

# %% [markdown]

# The PDF plots reveal deviations from Gaussianity across assets, with all three showing

heavier tails and stronger kurtosis than the normal model can capture. Student-t and
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conditional parametric approaches provide better tail fitting, while FHS most closely

reproduces the empirical distributional features. The differences across AAPL, META, and

JPM further confirm that tail behaviour is asset-dependent.

# %% [markdown]

# ## 3) Rolling-window backtesting of VaR and ES

# %% [markdown]

# Use a rolling window of size W to produce 1-step-ahead VaR/ES at 95% and 99% for each

method in Exercise 2. Then, implement the following statistical tests:

#

# - VaR backtests: Kupiec POF and Christoffersen independence tests.

# - ES backtest: AcerbiSzkely Z1 test.

# %%

METHODS = {

"historical": historical_simulation,

"gaussian": gaussian_normal_distribution,

"student": student_var_es,

"parametric": conditional_parametric_var_es,

"fhs": filtered_historical_simulation

}

# Put results into a nice rolling forecast dataframe

def rolling_forecast(L, W, methods, confidence):

results = []

for name, func in methods.items():

for metric in ["VaR", "ES"]:

for a in confidence:

series = L.rolling(W).apply(

lambda loss: func(loss, confidence)[metric][a]

)

series.name = (name, metric, a)

results.append(series)

out = pd.concat(results, axis=1)

# Make it into a nice dataframe to facilitate computations

out.columns = pd.MultiIndex.from_tuples(out.columns, names=["method", "metric", "alpha"

])

return out.dropna(how="all")

rolling_results = {}

for ticker in TICKERS:

print(f’Processing␣{ticker}...’)

L = -log_returns[ticker]

rolling_results[ticker] = rolling_forecast(L, WINDOW, METHODS, CONFIDENCE)

clear_output()

display(rolling_results)

# %%

import matplotlib.dates as mdates

def plot_var_subplots(rolling_results, log_returns, tickers, methods_to_plot, confidence

=0.95):

n_methods = len(methods_to_plot)

n_tickers = len(tickers)
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fig, axes = plt.subplots(n_methods, n_tickers, figsize=(6*n_tickers, 3*n_methods),

sharex=True)

for i, method in enumerate(methods_to_plot):

for j, ticker in enumerate(tickers):

ax = axes[i, j]

L = -log_returns[ticker].dropna()

df = rolling_results[ticker]

VaR_series = df[(method, "VaR", confidence)].dropna()

# Align loss and VaR indices

common_idx = L.index.intersection(VaR_series.index)

L_aligned = L.loc[common_idx]

V_aligned = VaR_series.loc[common_idx]

ax.plot(L.index, L.values, color="black", alpha=0.35, linewidth=0.9)

ax.plot(V_aligned.index, V_aligned.values, linewidth=1.6, label=f"{method}␣VaR")

violations = L_aligned > V_aligned

ax.scatter(

L_aligned[violations].index, L_aligned[violations].values,

color="red", marker="x", s=50

)

# Titles

if i == 0:

ax.set_title(f"{ticker}", fontsize=14, fontweight="bold")

if j == 0:

ax.set_ylabel(f"{method}\nLoss␣/␣VaR", fontsize=11)

# Grid

ax.grid(alpha=0.3)

ax.legend(fontsize=8, loc="upper␣left")

#Prevent overlapping date labels

if i == n_methods - 1: # only bottom row shows dates

ax.xaxis.set_major_locator(mdates.MonthLocator(interval=3))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m’))

plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)

else:

ax.set_xticklabels([])

plt.suptitle(f"Rolling␣VaR␣vs␣Realized␣Losses␣({int(confidence*100)}%␣Confidence)",

fontsize=16, fontweight="bold")

plt.tight_layout(rect=[0, 0, 1, 0.96])

plt.show()

plt.suptitle(f"Rolling␣VaR␣vs␣Realized␣Losses␣({int(confidence*100)}%␣Confidence)",

fontsize=16, fontweight="bold")

plt.tight_layout(rect=[0, 0, 1, 0.97])

plt.show()

methods_to_plot = ["historical", "fhs", "gaussian", "student", "parametric"]

methods_to_plot = ["historical", "fhs", "gaussian", "student", "parametric"]

plot_var_subplots(rolling_results=rolling_results, log_returns=log_returns, tickers=TICKERS,

methods_to_plot=methods_to_plot, confidence=0.95)
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# %% [markdown]

# From this plot, we observe that the non-parametric methods produce relatively flat VaR

curves, since they do not explicitly react to changes in volatility as it is washed out

by the estimation window. In contrast, the parametric approaches such as FHS and the

conditional parametric model adjust the VaR threshold dynamically and capture local

volatility spikes.

# %%

def kupiec_pof_test(VaR_series, L_series, alpha):

"""

␣␣␣␣Kupiec␣(1995)␣Proportion␣of␣Failures␣(POF)␣test.

␣␣␣␣H0:␣The␣observed␣failure␣rate␣equals␣alpha.

␣␣␣␣"""

df = pd.concat([VaR_series, L_series], axis=1)

df.columns = [’VaR’, ’Loss’]

df = df.dropna()

# Identify breaches

df[’breached’] = df[’Loss’] > df[’VaR’]

# Compute statistics

x = df[’breached’].sum()

n = len(df)

alpha_hat = x / n

# Edge cases

if alpha_hat == 0 or alpha_hat == 1:

return np.nan

# Kupiec POF statistic

POF = 2 * np.log(

((1 - alpha_hat) / (1 - alpha))**(n - x) *

(alpha_hat / alpha)**x

)

return POF

# %%

def christoffersen(VaR_series, L_series):

"""

␣␣␣␣Christoffersen␣(1998)␣conditional␣coverage␣test

␣␣␣␣"""

VaR = pd.Series(VaR_series, name="VaR").astype(float)

Loss = pd.Series(L_series, name="Loss").astype(float)

df = pd.concat([VaR, Loss], axis=1).dropna()

# Breach indicator

df[’breached’] = df[’Loss’] > df[’VaR’]

# Previous breach via shift

df[’breached_previous’] = df[’breached’].shift(1)

# Keep rows where previous state is defined

df = df.dropna(subset=[’breached_previous’])

# Transition counts using boolean masks

N_0_0 = ((~df[’breached’]) & (~df[’breached_previous’])).sum()

N_0_1 = (( df[’breached’]) & (~df[’breached_previous’])).sum()

N_1_0 = ((~df[’breached’]) & ( df[’breached_previous’])).sum()
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N_1_1 = (( df[’breached’]) & ( df[’breached_previous’])).sum()

N = N_0_0 + N_0_1 + N_1_0 + N_1_1

if N == 0:

return np.nan # not enough transitions

denom0 = N_0_0 + N_0_1 # times with prev=0

denom1 = N_1_0 + N_1_1 # times with prev=1

if denom0 == 0 or denom1 == 0:

return np.nan

pi_0 = N_0_1 / denom0

pi_1 = N_1_1 / denom1

p = (N_0_1 + N_1_1) / N

# In case log(0)

eps = 1e-12

pi_0 = np.clip(pi_0, eps, 1 - eps)

pi_1 = np.clip(pi_1, eps, 1 - eps)

p = np.clip(p, eps, 1 - eps)

L0_log = (N_0_0 + N_1_0) * np.log(1 - p) + (N_0_1 + N_1_1) * np.log(p)

L1_log = (N_0_0 * np.log(1 - pi_0) + N_0_1 * np.log(pi_0) +

N_1_0 * np.log(1 - pi_1) + N_1_1 * np.log(pi_1))

LR_ind = -2 * (L0_log - L1_log)

return LR_ind

# %%

def chi_square_test(t_stat, df, method_name, test_name) :

print(f’Performing␣{test_name}’)

p_value = 1 - chi2.cdf(t_stat, df = df)

print(f’The␣test␣statistic␣and␣p␣value␣for␣{method_name}␣are␣:␣t_stat␣{t_stat},␣p_value␣

{p_value}’)

if p_value < 0.05 :

print(f’Reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣{method_name}.\n’)

else :

print(f’Fail␣to␣reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣{method_name

}.\n’)

return p_value

# %%

confidence = 0.95

alpha = 1 - confidence

METHODS = [’historical’, ’gaussian’, ’student’, ’parametric’, ’fhs’]

result = pd.DataFrame(columns = [’Ticker’, ’Method’, ’test_statistic_pof’, ’p_value_pof’, ’

test_statistic_cd_coverage’, ’p_value_cd_coverage’])

for ticker in rolling_results.keys() :

print(’-’*115)

for method in METHODS:

ticker_df = rolling_results[ticker][method][’VaR’][confidence]

ticker_loss = -log_returns[ticker]

df = pd.DataFrame({"Loss": ticker_loss, "VaR": ticker_df})

# Shift loss series to align with VaR forecasts

df["Loss"] = df["Loss"].shift(-1)

df = df.dropna()

POF = kupiec_pof_test(df[’VaR’], df[’Loss’], alpha)

INC = christoffersen(df[’VaR’], df[’Loss’])
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result = pd.concat([

result,

pd.DataFrame([{

’Ticker’: ticker,

’Method’: method,

’test_statistic_pof’: POF,

’p_value_pof’: chi_square_test(

POF, df=1, method_name=f’{ticker}␣-␣{method}’, test_name=’POF␣test’

),

’test_statistic_cd_coverage’: INC + POF,

’p_value_cd_coverage’: chi_square_test(

INC + POF, df=2, method_name=f’{ticker}␣-␣{method}’, test_name=’

Christoffersen␣conditional␣coverage␣test’

)

}])

], ignore_index=True)

print(’-’*115)

# %%

result.pivot(index=[’Ticker’, ’Method’], columns=[], values=[’test_statistic_pof’, ’

p_value_pof’, ’test_statistic_cd_coverage’, ’p_value_cd_coverage’])

# %% [markdown]

# Across assets, all VaR models pass both the coverage and independence tests for META and

JPM, indicating that their VaR and ES forecasts are statistically consistent with

observed losses.

# In contrast, every model fails for AAPL, indicating an underestimation of the tail risk.

#

# We identify whether failures come from biased coverage or clustered exceptions by checking

which test rejects the null: Kupiec detects incorrect violation frequency, while

Christoffersens independence test reveals clustering, combining both indicates full

model adequacy.

#

# Since AAPL fails both the unconditional coverage test and the joint conditional coverage

test for each methods, this confirms biased coverage, indicating that the models

systematically underestimate its tail risk captured.

# %%

def es_backtest_z1(VaR_series, ES_series, Loss_series):

"""

␣␣␣␣Implements␣the␣MSCI␣Z1␣Expected␣Shortfall␣backtest␣(Acerbi␣&␣Szekely,␣2014)

␣␣␣␣Using␣the␣’X_t’␣definition:␣P&L␣(positive=profit,␣negative=loss)

␣␣␣␣"""

VaR = pd.Series(VaR_series, name="VaR", dtype="float64")

ES = pd.Series(ES_series, name="ES", dtype="float64")

Loss = pd.Series(Loss_series, name="Loss", dtype="float64")

df = pd.concat([VaR, ES, Loss], axis=1).dropna()

df["I_t"] = (df["Loss"] > df["VaR"]).astype(int)

N_T = int(df["I_t"].sum())

if N_T == 0:

return np.nan # No breaches, Z1 undefined

Z_1 = ( (df["Loss"] * df["I_t"]) / df["ES"] ).sum() / N_T - 1

return Z_1
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def monte_carlo_es_backtest_z1(VaR_series, ES_series, Loss_series, sampler, window, M=1000):

"""

␣␣␣␣VaR_series,␣ES_series␣:␣pandas.Series

␣␣␣␣␣␣␣␣Out-of-sample␣VaR/ES␣forecasts,␣same␣index␣(e.g.␣from␣rolling_forecast).

␣␣␣␣Loss_series␣:␣pandas.Series

␣␣␣␣␣␣␣␣Full␣loss␣series␣(in-sample␣+␣out-of-sample),␣NOT␣truncated.

␣␣␣␣sampler(window_array,␣M)␣->␣np.ndarray␣of␣shape␣(M,)

␣␣␣␣␣␣␣␣Function␣that,␣given␣a␣window␣of␣losses,␣returns␣M␣simulated␣losses.

␣␣␣␣window␣:␣int

␣␣␣␣␣␣␣␣Rolling␣window␣length␣used␣to␣estimate␣VaR/ES.

␣␣␣␣M␣:␣int

␣␣␣␣␣␣␣␣Number␣of␣Monte␣Carlo␣paths.

␣␣␣␣Returns

␣␣␣␣-------

␣␣␣␣Z1␣:␣np.ndarray␣of␣shape␣(M,)

␣␣␣␣␣␣␣␣Monte␣Carlo␣distribution␣of␣the␣ES␣backtest␣statistic␣Z1.

␣␣␣␣"""

# Make sure everything is aligned and sorted

VaR = VaR_series.sort_index()

ES = ES_series.reindex(VaR.index) # ensure same index/order

# Full loss series (sorted)

Loss_series = Loss_series.sort_index()

x = np.asarray(Loss_series, dtype=float)

loss_index = Loss_series.index

idx = VaR.index # out-of-sample dates

T = len(idx)

sims = np.empty((M, T), dtype=float)

# For each date, build the same rolling window used to estimate VaR/ES

for j, date in enumerate(idx):

loc = loss_index.get_loc(date) # position of this date in the full loss series

# Window of length ‘window‘ ending at ‘date‘

w = x[loc - window + 1 : loc + 1]

draws = sampler(w, M)

sims[:, j] = draws

# Compute Z1 for each simulated path

Z1 = np.empty(M, dtype=float)

for m in range(M):

sim_series = pd.Series(sims[m], index=idx)

Z1[m] = es_backtest_z1(VaR, ES, sim_series)

return Z1

# %%

sampler = {’historical’: historical_sampler, ’gaussian’: gaussian_sampler, ’student’:

student_sampler, ’parametric’: conditional_parametric_sampler, ’fhs’: fhs_sampler}

result = pd.DataFrame(columns=[’Ticker’, ’Method’, ’Z1_stat’, ’p_value_es_backtest’])

confidence = 0.95

for ticker in rolling_results.keys():
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print(’-’ * 115)

# Full loss series for this ticker (same as in rolling_forecast)

ticker_loss = -log_returns[ticker].dropna()

for method in METHODS:

ticker_df_es = rolling_results[ticker][method][’ES’][confidence]

ticker_df_var = rolling_results[ticker][method][’VaR’][confidence]

Z_1_simulated = monte_carlo_es_backtest_z1(ticker_df_var, ticker_df_es, ticker_loss,

sampler[method], window=WINDOW, M=1000)

real_Z1 = es_backtest_z1(ticker_df_var, ticker_df_es, ticker_loss)

p_value = (Z_1_simulated >= real_Z1).sum() / len(Z_1_simulated)

result = pd.concat([result,pd.DataFrame([{’Ticker’: ticker, ’Method’: method, ’

Z1_stat’: real_Z1, ’p_value_es_backtest’: p_value}])], ignore_index=True)

print(f’The␣test␣statistic␣and␣p␣value␣for␣{ticker}␣-␣{method}␣are␣:␣’f’Z1_stat␣{

real_Z1},␣p_value␣{p_value}’)

if p_value < 0.05:

print(f’Reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣{ticker}␣-␣{

method}.\n’)

else:

print(f’Fail␣to␣reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣{ticker}␣

-␣{method}.\n’)

# %%

result.pivot(index=[’Ticker’, ’Method’], columns=[], values=[’Z1_stat’ ,’p_value_es_backtest

’])

# %% [markdown]

# For AAPL, only the Gaussian ES model fails the $Z_1$ test, with a p-value of $0$,
indicating that the Gaussian assumption systematically underestimates tail severity.

# All other models exhibit p-values above 5\%, indicating that their ES estimates are

statistically compatible with the realized tail losses.

#

# For META, the Gaussian model fails, with a very small p-value of $0$, indicating that the

Gaussian assumption systematically underestimates tail severity.

# The conditional parametric model also fails with a p-value of $2\cdot10^{-2}$
# All other models exhibit p-values above 5\% showing no statistical evidence of ES

misspecification.

#

#

#

# For JPM, the Gaussian model has p-value $0$ and the parametric model $0$ and the student

model $3.50\cdot10^{-2}$ both fail the $Z_1$ test. These models underpredict the

magnitude of extreme losses. The historical and FHS models pass, indicating that their

ES forecasts align with realized tail behavior.

#

#

# Across the three assets, the results show that ES model performance is strongly asset

dependent, reflecting differences in tail behaviour across return distributions. A

common pattern is that the Gaussian model systematically fails for all assets,

confirming that its thin-tailed distributional assumption leads to persistent

underestimation of extreme losses. However, the fact that different models fail for

different assets highlights that the appropriateness of an ES model depends critically

on asset-specific tail dynamics. Notably, the filtered historical simulation performs

well across all cases, suggesting that its semi-parametric structure offers robust

flexibility in practice.
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# %% [markdown]

# ## 4) Copula fitting (first window)

# %% [markdown]

# - a. Visualize dependence in returns and copula space using pseudo-observations.

# - b. Fit Gaussian and t copulas; report parameters.

# - c. Simulate from fitted copulas and map to empirical marginals; compare with original

returns.

# %%

# TODO

# Use copulae package for copula fitting and sampling

# cop = copulae.elliptical.GaussianCopula(dim=len(TICKERS))

# cop.fit(data)

# samples = cop.random(n)

# %% [markdown]

# ### a. Pseudo-observations and dependence visualization

#

# Pseudo-observations transform the marginal distributions to uniform $[0,1]$ using

empirical ranks:

#

# $$
# U_{t,i} = \frac{\text{rank}(R_{t,i})}{W+1}, \quad t = 1,\ldots,W

# $$
#

# This allows us to visualize the **pure dependence structure** (copula) separately from

marginal behavior.

# %%

# Extract the first estimation window (W=252 observations) across assets

returns_window = log_returns.iloc[:WINDOW].copy()

# Compute pseudo-observations (empirical quantiles)

def compute_pseudo_obs(data):

"""

␣␣␣␣Transform␣data␣to␣pseudo-observations␣U␣in␣[0,1]␣using␣empirical␣ranks.

␣␣␣␣U_{t,i}␣=␣rank(R_{t,i})␣/␣(n+1)

␣␣␣␣"""

n = len(data)

U = data.rank() / (n + 1)

return U

pseudo_obs = compute_pseudo_obs(returns_window)

print("Pseudo-observations␣(first␣5␣rows):")

print(pseudo_obs.head())

print(f"\nShape:␣{pseudo_obs.shape}")

print(f"Range:␣[{pseudo_obs.min().min():.4f},␣{pseudo_obs.max().max():.4f}]")

# %%

returns_window.describe()

# %%

# Visualize dependence: raw returns space vs copula (pseudo-observations) space

pairs = list(combinations(TICKERS, 2))

n_pairs = len(pairs)

fig, axes = plt.subplots(2, n_pairs, figsize=(6*n_pairs, 10))
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for j, (asset_i, asset_j) in enumerate(pairs):

# Raw returns space

ax_raw = axes[0, j]

ax_raw.scatter(returns_window[asset_i], returns_window[asset_j],

alpha=0.5, s=20, edgecolors=’k’, linewidths=0.5)

ax_raw.set_xlabel(f’{asset_i}␣returns’)

ax_raw.set_ylabel(f’{asset_j}␣returns’)

ax_raw.set_title(f’Raw␣Returns:␣{asset_i}␣vs␣{asset_j}’)

ax_raw.grid(True, alpha=0.3)

# Copula space (pseudo-observations)

ax_copula = axes[1, j]

ax_copula.scatter(pseudo_obs[asset_i], pseudo_obs[asset_j],

alpha=0.5, s=20, edgecolors=’k’, linewidths=0.5, color=’coral’)

ax_copula.set_xlabel(f’U({asset_i})’)

ax_copula.set_ylabel(f’U({asset_j})’)

ax_copula.set_title(f’Copula␣Space:␣{asset_i}␣vs␣{asset_j}’)

ax_copula.set_xlim(0, 1)

ax_copula.set_ylim(0, 1)

ax_copula.grid(True, alpha=0.3)

plt.tight_layout()

plt.savefig(os.path.join(OUT_DIR, ’raw_returns_vs_pseudo_obs.png’))

plt.show()

# %% [markdown]

# ##### Interpretation of Raw Returns and Copula Space

#

# **Raw returns**

#

# The ** AAPLMETA ** pair exhibits a clear upward-sloping cloud, indicating a positive

dependence and frequent joint large moves. In contrast, **AAPLJPM** and **METAJPM** show

more diffuse scatter patterns, reflecting weaker dependence between tech firms and a

bank. Across all pairs, extreme returns are more dispersed than expected under normality

, suggesting heavy-tailed behavior and occasional simultaneous large shocks.

#

# **Copula space**

#

# In copula space, **AAPLMETA** displays a marked diagonal structure, confirming a positive

dependence. The clustering of observations near the corners (0,0) and (1,1) further

reveals tail dependencemeaning that extreme moves tend to occur together. By comparison,

**AAPLJPM** and **METAJPM** resemble an almost uniform cloud over \([0,1]^2\),

confirming weaker dependence and only marginal tail co-movement.

#

# **Implications for copula choice**

#

# Given the evident heavy tails and clear tail dependence in **AAPLMETA**, a Gaussian copula

, though adequate for symmetric dependence, cannot capture the probability mass in the

joint extremes. The Student-t copula, however, explicitly models tail dependence and is

therefore the appropriate copula for this portfolio. Its structure aligns with the

empirical behavior of the assets, particularly the strong, tail-driven co-movements

between the two tech stocks. Consequently, the Student-t copula provides a more

realistic representation of joint downside risk than its Gaussian counterpart.

# %% [markdown]

# ### b. Fit Gaussian and Student-t copulas

#

# **Gaussian Copula:**

# $$
# C^\text{Gauss}(u_1, \ldots, u_d; \Sigma) = \Phi_\Sigma\big(\Phi^{-1}(u_1), \ldots, \Phi

^{-1}(u_d)\big)
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# $$
# where $\Phi_\Sigma$ is the multivariate normal CDF with correlation matrix $\Sigma$.
#

# **Student-t Copula:**

# $$
# C^t(u_1, \ldots, u_d; \Sigma, \nu) = T_{\Sigma, \nu}\big(T_\nu^{-1}(u_1), \ldots, T_\nu

^{-1}(u_d)\big)

# $$
# where $T_{\Sigma,\nu}$ is the multivariate Student-t CDF with correlation $\Sigma$ and

degrees of freedom $\nu$.

# %%

# Fit Gaussian Copula

gauss_cop = copulae.elliptical.GaussianCopula(dim=len(TICKERS))

gauss_cop.fit(pseudo_obs.values, to_pobs=False)

gauss_corr = pd.DataFrame(gauss_cop.sigma, index=TICKERS, columns=TICKERS)

gauss_loglik = gauss_cop.log_lik(pseudo_obs.values, to_pobs=False)

gauss_num_params = len(gauss_cop.params)

print("GAUSSIAN␣COPULA\n")

print(gauss_corr.round(4))

print(f"\nLog-Likelihood:␣{gauss_loglik:.4f}")

print(f"Number␣of␣Parameters:␣{gauss_num_params}")

# %%

d = len(TICKERS)

# Fit Student-t Copula

t_cop = copulae.StudentCopula(dim=d)

t_cop.fit(pseudo_obs.values, to_pobs=False)

print("STUDENT-T␣COPULA\n")

nu = t_cop.params[0]

print("Correlation␣Matrix␣sigma:")

corr_matrix = t_cop.sigma

print(pd.DataFrame(corr_matrix, index=TICKERS, columns=TICKERS).round(4))

t_loglik = t_cop.log_lik(pseudo_obs.values, to_pobs=False)

t_num_params = d * (d - 1) // 2 + 1

print(f"\nLog-Likelihood:␣{t_loglik:.4f}")

print(f"Number␣of␣Parameters:␣{t_num_params}")

print(f"Degrees␣of␣Freedom␣nu:␣{nu:.4f}")

# %% [markdown]

# ##### Explanation of the fitting procedure

#

# We first transform the returns into **pseudo-observations**

# $$
# U_{t,i} = \frac{\text{rank}(R_{t,i})}{W+1}

# $$
# so each marginal is approximately uniform on \[0,1]\.

#

# This allows us to fit the copulas **only on the dependence structure**.

#

# Both copulas are then fitted using **maximum likelihood**: the pseudo-observations are

transformed using the appropriate inverse CDF, and the log-likelihood is maximized over

the copula parameters.
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#

# **Gaussian copula.**

# Maximizes the likelihood over the correlation matrix $\Sigma$ only, after applying the

inverse normal CDF.

#

# **Student-t copula.**

# Same procedure as the Gaussian copula, but with one additional parameter: the **degrees of

freedom** $\nu$, which controls tail dependence.

#

# Thus, both models share the same fitting framework. The Student-t copula simply includes

an extra parameter to capture heavier joint tails.

# %% [markdown]

# ### c. Simulate from copulas and compare with original returns

#

# We simulate from the fitted copulas and map back to the original return scale using

empirical marginals.

# %% [markdown]

# 1. **Generate uniform samples (dependence only)**

#

# From the fitted copula $C_\theta$, we simulate

# $$
# U^{(t)} = (U^{(t)}_1, \dots, U^{(t)}_d) \sim C_\theta, \qquad t = 1,\dots,T,

# $$
# where $U^{(t)}_i \in (0,1)$.
# These uniforms encode the **dependence structure** of the Gaussian or Student-t copula.

#

# 2. **Apply the inverse empirical CDFs (recover marginals)**

#

# For each asset $i$, let $\hat F_i^{-1}$ denote the empirical quantile function built

from the observed returns.

# Each uniform component is transformed via

# $$
# X^{(t)}_i = \hat F_i^{-1}\!\left(U^{(t)}_i\right),

# $$
# which ensures the simulated data have the **same marginal distribution** as the

original returns.

#

# 3. **Construct simulated return series**

#

# Repeating this for all assets and all samples produces two synthetic datasets,

# $
# X^{(t)}_{\text{Gauss}}, \quad

# X^{(t)}_{\text{t-copula}}

# $
# each with the original empirical marginals but with dependence dictated by the fitted

Gaussian or Student-t copula.

# %%

T = len(log_returns)

print(f"Simulating␣T={T}␣samples␣from␣each␣fitted␣copula...")

# Sample U ~ Copula

U_gauss = gauss_cop.random(T)

U_t = t_cop.random(T)

# %%

def inverse_empirical(u, data):

"""

␣␣␣␣Strict␣monotonic␣inverse-ECDF␣using␣interpolation
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␣␣␣␣Maps␣uniform␣U␣to␣real␣observed␣distribution␣of␣data.

␣␣␣␣"""

data_sorted = np.sort(data)

ranks = (np.arange(1, len(data_sorted) + 1)) / (len(data_sorted) + 1)

return np.interp(u, ranks, data_sorted)

# %%

sim_gauss = pd.DataFrame({

ticker: inverse_empirical(U_gauss[:, i], log_returns[ticker].values)

for i, ticker in enumerate(TICKERS)

})

sim_t = pd.DataFrame({

ticker: inverse_empirical(U_t[:, i], log_returns[ticker].values)

for i, ticker in enumerate(TICKERS)

})

print("\nSimulated␣returns␣(Gaussian):")

display(sim_gauss.head())

print("\nSimulated␣returns␣(Student-t):")

display(sim_t.head())

# %%

fig, axes = plt.subplots(

2, len(TICKERS), figsize=(5 * len(TICKERS), 8), squeeze=False

)

for j, tk in enumerate(TICKERS):

# Shared bins across original + both simulations

pooled = np.concatenate([log_returns[tk], sim_gauss[tk], sim_t[tk]])

bins = np.histogram_bin_edges(pooled, bins=’auto’)

# ---- Row 1: Original vs Gaussian ----

ax = axes[0, j]

ax.hist(log_returns[tk], bins=bins, density=True, alpha=0.5,

label="Original", edgecolor="k", color="tab:blue")

ax.hist(sim_gauss[tk], bins=bins, density=True, alpha=0.5,

label="Gaussian␣copula", edgecolor="k", color="tab:orange")

ax.set_title(f"{tk}␣ ␣Original␣vs␣Gaussian")

ax.set_xlabel("Return")

ax.set_ylabel("Density")

ax.grid(True, alpha=0.3)

# ---- Row 2: Original vs Student-t ----

ax = axes[1, j]

ax.hist(log_returns[tk], bins=bins, density=True, alpha=0.5,

label="Original", edgecolor="k")

ax.hist(sim_t[tk], bins=bins, density=True, alpha=0.5,

label="Student-t␣copula", edgecolor="k", color="tab:olive")

ax.set_title(f"{tk}␣ ␣Original␣vs␣Student-t")

ax.set_xlabel("Return")

ax.set_ylabel("Density")

ax.grid(True, alpha=0.3)

# Define legend patches manually

original_patch = mpatches.Patch(facecolor="tab:blue", alpha=0.5, label="Original", edgecolor

="k")

gaussian_patch = mpatches.Patch(facecolor="tab:orange", alpha=0.5, label="Gaussian␣copula",

edgecolor="k")

student_t_patch = mpatches.Patch(facecolor="tab:olive", alpha=0.5, label="Student-t␣copula",
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edgecolor="k")

fig.legend(

handles=[original_patch, gaussian_patch, student_t_patch],

loc="upper␣center", ncols=3, frameon=False

)

plt.tight_layout(rect=[0, 0, 1, 0.92])

plt.savefig(os.path.join(OUT_DIR, ’copula_marginal_distributions_split.png’))

plt.show()

# %% [markdown]

# The histograms show that both simulated datasets closely match the original return

distributions, as expected from using empirical quantile mapping.

# %%

# Dependence structure

pairs = list(combinations(TICKERS, 2))

fig, axes = plt.subplots(3, len(pairs), figsize=(6 * len(pairs), 14), squeeze=False)

for col, (a, b) in enumerate(pairs):

# 1) original

ax = axes[0, col]

ax.scatter(log_returns[a], log_returns[b], alpha=0.5, s=15)

ax.set_title(f"Original:␣{a}␣vs␣{b}")

ax.grid(True, alpha=0.3)

# 2) Gaussian

ax = axes[1, col]

ax.scatter(sim_gauss[a], sim_gauss[b], alpha=0.5, s=15)

ax.set_title(f"Gaussian␣Sim:␣{a}␣vs␣{b}")

ax.grid(True, alpha=0.3)

# 3) Student-t

ax = axes[2, col]

ax.scatter(sim_t[a], sim_t[b], alpha=0.5, s=15)

ax.set_title(f"Student-t␣Sim:␣{a}␣vs␣{b}")

ax.grid(True, alpha=0.3)

# annotate rows

axes[0,0].set_ylabel("Original")

axes[1,0].set_ylabel("Gaussian")

axes[2,0].set_ylabel("Student-t")

plt.tight_layout()

plt.savefig(os.path.join(OUT_DIR, ’copula_dependence_structure.png’))

plt.show()

# %% [markdown]

# The scatter plots indicate that both copulas reproduce the overall dependence structure.

The Student-t copula generates slightly more joint extremes, but the differences remain

modest given the estimated degrees of freedom.

# %%

# Align simulated data index with original returns

sim_gauss.index = log_returns.index[:len(sim_gauss)]

sim_t.index = log_returns.index[:len(sim_t)]

# Consistent colors with your histogram

COL_ORIG = "tab:blue"

COL_GAUS = "tab:orange"
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COL_T = "tab:olive"

fig, axes = plt.subplots(

2, len(TICKERS), figsize=(5 * len(TICKERS), 8),

squeeze=False, sharex=’col’

)

for j, tk in enumerate(TICKERS):

# ----- Row 1: Original vs Gaussian -----

ax = axes[0, j]

ax.plot(log_returns.index, log_returns[tk],

lw=1, label="Original", color=COL_ORIG)

ax.plot(sim_gauss.index, sim_gauss[tk],

lw=1, label="Gaussian␣copula", color=COL_GAUS)

ax.set_title(f"{tk}␣ ␣Original␣vs␣Gaussian␣(Time␣Series)")

ax.set_ylabel("Return")

ax.grid(True, alpha=0.3)

# no x-label on top row

# ----- Row 2: Original vs Student-t -----

ax = axes[1, j]

ax.plot(log_returns.index, log_returns[tk],

lw=1, label="Original", color=COL_ORIG)

ax.plot(sim_t.index, sim_t[tk],

lw=1, label="Student-t␣copula", color=COL_T)

ax.set_title(f"{tk}␣ ␣Original␣vs␣Student-t␣(Time␣Series)")

ax.set_xlabel("Time")

ax.set_ylabel("Return")

ax.grid(True, alpha=0.3)

ax.tick_params(axis="x", rotation=45) # nicer date labels

handles1, labels1 = axes[0, 0].get_legend_handles_labels()

handles2, labels2 = axes[1, 0].get_legend_handles_labels()

handles = list(handles1)

labels = list(labels1)

for h, lab in zip(handles2, labels2):

if lab not in labels:

handles.append(h)

labels.append(lab)

fig.legend(handles, labels,

loc="upper␣center", ncols=3, frameon=False)

plt.tight_layout(rect=[0, 0, 1, 0.92])

plt.savefig(os.path.join(OUT_DIR, "copula_time_series_comparison.png"))

plt.show()

# %% [markdown]

# The plots above compare the original return series with returns simulated using Gaussian

and Student-t copulas for AAPL, META, and JPM.

#

# Key observations:

#

# - **Overall return dynamics:** All series fluctuate around zero with frequent sign changes

, consistent with daily stock return behavior.

#

# - **Volatility clustering:** The **original data** exhibit periods where large movements

are followed by other large movements (both positive and negative), particularly visible

in META and AAPL around early 2024. Both copula simulations **partially replicate**
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this phenomenon, but the effect is **more pronounced in the Student-t copula**, where

clusters of large returns appear more frequently, especially for META.

#

# - **Gaussian copula behavior:** The Gaussian generated series tracks the general

variability of the original returns but displays **smoother fluctuations**. Large spikes

are **less frequent and less intense**, indicating that the Gaussian copula **

underestimates tail events** and does not fully capture periods of heightened volatility

.

#

# - **Student-t copula behavior:** The Student-t simulated paths show **higher amplitude

jumps and more erratic bursts**, aligning more closely with the original heavy-tailed

structure. This copula better reproduces **extreme shocks and volatility clustering**,

particularly visible in META and JPM, where large returns tend to appear in temporal

clusters.

#

# While both copulas mimic the central fluctuations of the return series, **the Student-t

copula provides a more realistic replication of extreme events and volatility clustering

**, making it more suitable for modeling financial return dynamics and risk.

# %% [markdown]

# ## 5) Portfolio VaR/ES with copulas (rolling)

# %% [markdown]

# Equal-weighted portfolio of AAPL, MSFT, JPM. Compare univariate models (as in Exercise 3)

vs copula-based VaR/ES with rolling windows.

#

# At each time, fit copulas on last W weeks, simulate N scenarios, estimate VaR/ES from

simulated portfolio returns, then backtest.

# %% [markdown]

# ### a. Univariate models on portfolio returns

#

# Apply the same backtesting procedure as in question 3, but now on equal-weighted portfolio

returns.

# %%

# Compute equal-weighted portfolio returns

# Portfolio return = (1/3) * R_AAPL + (1/3) * R_META + (1/3) * R_JPM

weights = np.array([1/3, 1/3, 1/3])

portfolio_returns = (log_returns[TICKERS] * weights).sum(axis=1)

print("Equal-weighted␣portfolio␣returns:")

print(f"Shape:␣{portfolio_returns.shape}")

print(f"Mean:␣{portfolio_returns.mean():.6f}")

print(f"Std␣Dev:␣{portfolio_returns.std():.6f}")

print(f"Min:␣{portfolio_returns.min():.6f}")

print(f"Max:␣{portfolio_returns.max():.6f}")

print("\nFirst␣5␣portfolio␣returns:")

print(portfolio_returns.head())

# %%

# Apply rolling-window forecasts to portfolio returns (same as question 3)

print("Computing␣rolling␣VaR/ES␣for␣portfolio␣using␣univariate␣models...")

print(f"Window␣size:␣{WINDOW}␣days")

print(f"Confidence␣levels:␣{CONFIDENCE}")

METHODS = {

"historical": historical_simulation,

"gaussian": gaussian_normal_distribution,

"student": student_var_es,
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"parametric": conditional_parametric_var_es,

"fhs": filtered_historical_simulation

}

L_portfolio = -portfolio_returns

portfolio_rolling_results = rolling_forecast(L_portfolio, WINDOW, METHODS, CONFIDENCE)

print(f"\nRolling␣forecasts␣complete")

print(f"Results␣shape:␣{portfolio_rolling_results.shape}")

print(f"Number␣of␣forecasts:␣{len(portfolio_rolling_results.dropna())}")

# %%

# Backtest portfolio VaR using Kupiec POF test

print("-"*60)

print("PORTFOLIO␣VaR␣BACKTESTING␣-␣CHRISTOFFERSEN␣CONDITIONAL␣COVERAGE␣TEST␣-␣KUPIEC␣POF␣

TEST")

print("-"*60)

result = pd.DataFrame(columns = [’Confidence␣Level’, ’Method’, ’POF_p_value’, ’

Christoffersen_p_value’])

for confidence in CONFIDENCE:

alpha = 1 - confidence

print(f"\n{’-’*60}")

print(f"Confidence␣Level:␣{int(confidence*100)}%")

print(f"{’-’*60}\n")

for method in METHODS.keys():

VaR_portfolio = portfolio_rolling_results[method][’VaR’][confidence]

print(f’\nPOF␣test␣for␣Portfolio␣-␣{method}␣method:’)

POF = kupiec_pof_test(VaR_portfolio, L_portfolio, alpha)

LR_ind = christoffersen(VaR_portfolio, L_portfolio)

result = pd.concat([

result,

pd.DataFrame([{

’Confidence␣Level’: f’{int(confidence*100)}%’,

’Method’: method,

’POF_p_value’: chi_square_test(POF, df=1, method_name=f’Portfolio␣-␣{method}’

, test_name=’POF␣test’),

’Christoffersen_p_value’: chi_square_test(LR_ind + POF, df=2, method_name=f’

Portfolio␣-␣{method}’, test_name=’Christoffersen␣conditional␣coverage␣

test’)

}])

], ignore_index=True)

# %%

print("-"*60)

print("PORTFOLIO␣VaR␣&␣ES␣BACKTESTING")

print("-"*60)

# Result table: add ES columns

result = pd.DataFrame(columns=[

’Confidence␣Level’,

’Method’,

’POF_p_value’,

’Christoffersen_p_value’,

’ES_Z1_stat’,

’ES_p_value’

])

portfolio_loss = L_portfolio.sort_index()
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for confidence in CONFIDENCE:

alpha = 1 - confidence

print(f"\n{’-’*60}")

print(f"Confidence␣Level:␣{int(confidence*100)}%")

print(f"{’-’*60}\n")

for method in METHODS.keys():

# -------- VaR backtests --------

VaR_portfolio = portfolio_rolling_results[method][’VaR’][confidence]

print(f’\nPOF␣&␣Christoffersen␣tests␣for␣Portfolio␣-␣{method}␣method:’)

POF = kupiec_pof_test(VaR_portfolio, L_portfolio, alpha)

LR_ind = christoffersen(VaR_portfolio, L_portfolio)

p_pof = chi_square_test(

POF, df=1,

method_name=f’Portfolio␣-␣{method}’,

test_name=’POF␣test’

)

p_christoffersen = chi_square_test(

LR_ind + POF, df=2,

method_name=f’Portfolio␣-␣{method}’,

test_name=’Christoffersen␣conditional␣coverage␣test’

)

# -------- ES backtest (AcerbiSzekely Z1) --------

ES_portfolio = portfolio_rolling_results[method][’ES’][confidence]

Z1_simulated = monte_carlo_es_backtest_z1(

VaR_series=VaR_portfolio,

ES_series=ES_portfolio,

Loss_series=portfolio_loss,

sampler=sampler[method],

window=WINDOW,

M=1000

)

real_Z1 = es_backtest_z1(

VaR_series=VaR_portfolio,

ES_series=ES_portfolio,

Loss_series=portfolio_loss

)

p_es = (Z1_simulated >= real_Z1).sum() / len(Z1_simulated)

result = pd.concat([

result,

pd.DataFrame([{

’Confidence␣Level’: f’{int(confidence*100)}%’,

’Method’: method,

’POF_p_value’: p_pof,

’Christoffersen_p_value’: p_christoffersen,

’ES_Z1_stat’: real_Z1,

’ES_p_value’: p_es

}])

], ignore_index=True)

summary = result.set_index([’Confidence␣Level’, ’Method’])[

[’POF_p_value’, ’Christoffersen_p_value’, ’ES_Z1_stat’, ’ES_p_value’]

]
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# %%

summary

# %% [markdown]

# ### b. Copula-based portfolio VaR/ES (rolling)

#

# At each time $t$, fit the copulas as in 4.b) on the last $W$ days of portfolio component

returns. Simulate $N = 1000$ returns from each fitted copula, then estimate VaR/ES from

the simulated portfolio returns.

# %%

def copula_portfolio_var_es(returns_df, tickers, weights, W, N_sim=1000, confidence=

CONFIDENCE):

"""

␣␣␣␣Rolling␣copula-based␣VaR/ES␣estimation␣for␣portfolio.

␣␣␣␣For␣each␣time␣t,␣fit␣Gaussian␣and␣Student-t␣copulas␣on␣the␣last␣W␣days␣of␣returns,

␣␣␣␣simulate␣N_sim␣scenarios,␣construct␣portfolio␣returns,␣and␣compute␣VaR/ES.

␣␣␣␣Parameters:

␣␣␣␣␣␣␣␣returns_df␣:␣pd.DataFrame

␣␣␣␣␣␣␣␣␣␣␣␣Log␣returns␣for␣all␣assets

␣␣␣␣␣␣␣␣tickers␣:␣list

␣␣␣␣␣␣␣␣␣␣␣␣List␣of␣ticker␣symbols

␣␣␣␣␣␣␣␣weights␣:␣np.array

␣␣␣␣␣␣␣␣␣␣␣␣Portfolio␣weights␣(should␣sum␣to␣1)

␣␣␣␣␣␣␣␣W␣:␣int

␣␣␣␣␣␣␣␣␣␣␣␣Rolling␣window␣size

␣␣␣␣␣␣␣␣N_sim␣:␣int

␣␣␣␣␣␣␣␣␣␣␣␣Number␣of␣Monte␣Carlo␣simulations

␣␣␣␣␣␣␣␣alphas␣:␣list

␣␣␣␣␣␣␣␣␣␣␣␣Confidence␣levels

␣␣␣␣Returns:

␣␣␣␣␣␣␣␣results␣:␣dict

␣␣␣␣␣␣␣␣␣␣␣␣Dictionary␣with␣’gaussian’␣and␣’student’␣keys,␣each␣containing␣VaR␣and␣ES␣

forecasts

␣␣␣␣"""

T = len(returns_df)

# Initialize result storage

results = {

’gaussian’: {

’VaR’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence

},

’ES’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence}

},

’student’: {

’VaR’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence

},

’ES’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence}

}

}

# Rolling window estimation

for t in range(W, T):

# Extract window data

window_returns = returns_df.iloc[t-W:t][tickers].copy()

pseudo_obs = compute_pseudo_obs(window_returns)

# Fit Gaussian copula
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gauss_cop = copulae.elliptical.GaussianCopula(dim=len(tickers))

gauss_cop.fit(pseudo_obs.values, to_pobs=False)

# Fit Student-t copula

t_cop = copulae.StudentCopula(dim=len(tickers))

t_cop.fit(pseudo_obs.values, to_pobs=False)

# Simulate from copulas

U_gauss = gauss_cop.random(N_sim)

U_t = t_cop.random(N_sim)

# Convert copula samples to returns

sim_returns_gauss = np.zeros((N_sim, len(tickers)))

sim_returns_t = np.zeros((N_sim, len(tickers)))

for i, ticker in enumerate(tickers):

sim_returns_gauss[:, i] = inverse_empirical(U_gauss[:, i], window_returns[ticker

].values)

sim_returns_t[:, i] = inverse_empirical(U_t[:, i], window_returns[ticker].values)

# Compute portfolio returns and losses

portfolio_returns_gauss = sim_returns_gauss @ weights

portfolio_returns_t = sim_returns_t @ weights

portfolio_losses_gauss = -portfolio_returns_gauss

portfolio_losses_t = -portfolio_returns_t

# Compute VaR and ES for each confidence level

current_date = returns_df.index[t]

for a in confidence:

# Gaussian copula

VaR_gauss = np.percentile(portfolio_losses_gauss, a * 100)

ES_gauss = portfolio_losses_gauss[portfolio_losses_gauss >= VaR_gauss].mean()

results[’gaussian’][’VaR’][a].loc[current_date] = VaR_gauss

results[’gaussian’][’ES’][a].loc[current_date] = ES_gauss

# Student-t copula

VaR_t = np.percentile(portfolio_losses_t, a * 100)

ES_t = portfolio_losses_t[portfolio_losses_t >= VaR_t].mean()

results[’student’][’VaR’][a].loc[current_date] = VaR_t

results[’student’][’ES’][a].loc[current_date] = ES_t

return results

# %%

def copula_sampler(L_window, M, type=’gaussian’):

"""

␣␣␣␣L_window:␣DataFrame␣or␣2D␣array␣of␣shape␣(T_window,␣d)

␣␣␣␣␣␣␣␣␣␣␣␣␣␣rows␣=␣time,␣columns␣=␣assets␣(returns)

␣␣␣␣M:␣number␣of␣simulated␣scenarios

␣␣␣␣type:␣’gaussian’␣or␣’student’

␣␣␣␣"""

L_window = pd.DataFrame(L_window)

d = L_window.shape[1]

# Pseudo-observations

U = compute_pseudo_obs(L_window)

if type == ’gaussian’:

cop = copulae.elliptical.GaussianCopula(dim=d)
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else:

cop = copulae.StudentCopula(dim=d)

cop.fit(U.values, to_pobs=False)

# Simulate U

U_sim = cop.random(M)

# Map each marginal back

sim_returns = np.zeros((M, d))

for i in range(d):

sim_returns[:, i] = inverse_empirical(U_sim[:, i], L_window.iloc[:, i].values)

# Compute portfolio returns and losses

portfolio_returns = sim_returns @ weights

portfolio_losses = -portfolio_returns

return portfolio_losses

# %%

def monte_carlo_es_backtest_z1_copula(VaR_series, ES_series, portfolio_loss, asset_returns,

window, copula_type, M=1000):

"""

␣␣␣␣VaR_series,␣ES_series:␣rolling␣forecasts␣(aligned␣with␣portfolio_loss)

␣␣␣␣portfolio_loss:␣Series␣of␣portfolio␣losses␣(same␣index␣as␣VaR/ES)

␣␣␣␣asset_returns:␣DataFrame␣of␣asset␣returns␣(same␣index␣as␣portfolio_loss)

␣␣␣␣window:␣rolling␣window␣length␣used␣to␣estimate␣VaR/ES

␣␣␣␣copula_type:␣’gaussian’␣or␣’student’

␣␣␣␣M:␣number␣of␣Monte␣Carlo␣paths

␣␣␣␣"""

x = np.asarray(portfolio_loss, dtype=float)

n = len(x)

T = n - window + 1

idx = portfolio_loss.index[window-1:]

sims = np.empty((M, T), dtype=float)

for t in range(T):

# Window of asset returns used for estimation at time t

L_window = asset_returns.iloc[t:t+window, :]

draws = copula_sampler(L_window, M, type=copula_type)

sims[:, t] = draws

VaR = VaR_series.loc[idx]

ES = ES_series.loc[idx]

Z1 = np.empty(M, dtype=float)

for m in range(M):

sim_series = pd.Series(sims[m], index=idx)

Z1[m] = es_backtest_z1(VaR, ES, sim_series)

return Z1

# %%

def monte_carlo_es_backtest_z1_copula(

VaR_series,

ES_series,

portfolio_loss,

asset_returns,

window,
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copula_type,

M=1000

):

"""

␣␣␣␣VaR_series,␣ES_series␣:␣pandas.Series

␣␣␣␣␣␣␣␣Out-of-sample␣VaR/ES␣forecasts,␣same␣index␣(e.g.␣from␣rolling_forecast).

␣␣␣␣portfolio_loss␣:␣pandas.Series

␣␣␣␣␣␣␣␣Full␣portfolio␣loss␣series␣(in-sample␣+␣out-of-sample),␣NOT␣truncated.

␣␣␣␣asset_returns␣:␣pandas.DataFrame

␣␣␣␣␣␣␣␣Asset␣returns␣used␣to␣build␣the␣copula,␣same␣(or␣superset)␣index␣as␣portfolio_loss.

␣␣␣␣window␣:␣int

␣␣␣␣␣␣␣␣Rolling␣window␣length␣used␣to␣estimate␣VaR/ES␣and␣the␣copula.

␣␣␣␣copula_type␣:␣str

␣␣␣␣␣␣␣␣’gaussian’␣or␣’student’␣(or␣any␣type␣supported␣by␣copula_sampler).

␣␣␣␣M␣:␣int

␣␣␣␣␣␣␣␣Number␣of␣Monte␣Carlo␣paths.

␣␣␣␣Returns

␣␣␣␣-------

␣␣␣␣Z1␣:␣np.ndarray␣of␣shape␣(M,)

␣␣␣␣␣␣␣␣Monte␣Carlo␣distribution␣of␣the␣ES␣backtest␣statistic␣Z1.

␣␣␣␣"""

# 1) Align and sort VaR/ES

VaR = VaR_series.sort_index()

ES = ES_series.reindex(VaR.index) # ensure same index/order as VaR

# 2) Sort portfolio losses and asset returns

portfolio_loss = portfolio_loss.sort_index()

asset_returns = asset_returns.sort_index()

loss_index = portfolio_loss.index

ret_index = asset_returns.index

# Out-of-sample dates (where VaR/ES are defined)

idx = VaR.index

T = len(idx)

sims = np.empty((M, T), dtype=float)

# 3) For each OOS date, reconstruct the window used to estimate VaR/ES & copula

for j, date in enumerate(idx):

# Position of this date in the full series

loc_ret = ret_index.get_loc(date)

# Window of length ‘window‘ ending at ‘date‘

# (assumes VaR/ES start only after at least ‘window‘ observations)

L_window = asset_returns.iloc[loc_ret - window + 1 : loc_ret + 1, :]

# Draw portfolio losses from the copula-based sampler

draws = copula_sampler(L_window, M, type=copula_type)

draws = np.asarray(draws, dtype=float).reshape(M,) # safety reshape

sims[:, j] = draws

# 4) Compute Z1 for each simulated path

Z1 = np.empty(M, dtype=float)

for m in range(M):

sim_series = pd.Series(sims[m], index=idx)

Z1[m] = es_backtest_z1(VaR, ES, sim_series)

return Z1
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# %%

# Compute copula-based rolling VaR/ES for portfolio

print("Computing␣copula-based␣rolling␣VaR/ES␣for␣portfolio...")

print(f"Window␣size:␣{WINDOW}␣days")

print(f"Monte␣Carlo␣simulations:␣N=1000")

print(f"Confidence␣levels:␣{CONFIDENCE}")

print(f"Portfolio␣weights:␣{weights}")

copula_results = copula_portfolio_var_es(

returns_df=log_returns,

tickers=TICKERS,

weights=weights,

W=WINDOW,

N_sim=1000,

confidence=CONFIDENCE

)

print(f"\nCopula-based␣rolling␣forecasts␣complete")

print(f"Number␣of␣Gaussian␣VaR␣forecasts␣(alpha=0.05):␣{copula_results[’gaussian’][’VaR

’][0.95].notna().sum()}")

print(f"Number␣of␣Student-t␣VaR␣forecasts(alpha=0.05):␣{copula_results[’student’][’VaR

’][0.95].notna().sum()}\n\n")

# %% [markdown]

# ### c. Backtesting and comparison: univariate vs copula-based approaches

#

# Compare portfolio VaR/ES backtests across univariate methods (part a) and copula-based

approaches (part b). Assess whether explicit dependence modeling improves accuracy,

especially in the tails.

# %%

# Backtest copula-based VaR using Kupiec POF test

print("-"*60)

print("COPULA-BASED␣PORTFOLIO␣VaR␣BACKTESTING␣-␣KUPIEC␣POF␣TEST")

print("-"*60)

result = pd.DataFrame(columns = [’Confidence␣Level’, ’Method’, ’POF_p_value’])

for confidence in CONFIDENCE:

alpha = 1 - confidence

print(f"\n{’-’*60}")

print(f"Confidence␣Level:␣{int(confidence*100)}%")

print(f"{’-’*60}\n")

# Gaussian copula

VaR_gauss = copula_results[’gaussian’][’VaR’][confidence]

POF_gauss = kupiec_pof_test(VaR_gauss, L_portfolio, alpha)

chi_square_test(POF_gauss, df=1, method_name=’Portfolio␣-␣Gaussian␣Copula’, test_name=’

POF␣test’)

# Student-t copula

VaR_t = copula_results[’student’][’VaR’][confidence]

POF_t = kupiec_pof_test(VaR_t, L_portfolio, alpha)

chi_square_test(POF_t, df=1, method_name=’Portfolio␣-␣Student-t␣Copula’, test_name=’POF␣

test’)

# %%

# Backtest copula-based VaR using Christoffersen independence test

print("-"*60)

print("COPULA-BASED␣PORTFOLIO␣VaR␣BACKTESTING␣-␣CHRISTOFFERSEN␣CONDITIONAL␣COVERAGE␣TEST")

print("-"*60)
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for confidence in CONFIDENCE:

alpha = 1 - confidence

print(f"\n{’-’*60}")

print(f"Confidence␣Level:␣{int(confidence*100)}%")

print(f"{’-’*60}\n")

# Gaussian copula

VaR_gauss = copula_results[’gaussian’][’VaR’][confidence]

POF_gauss = kupiec_pof_test(VaR_gauss, L_portfolio, alpha)

LR_ind_gauss = christoffersen(VaR_gauss, L_portfolio)

chi_square_test(LR_ind_gauss + POF_gauss, df=2, method_name=’Portfolio␣-␣Gaussian␣Copula

’, test_name=’Christoffersen␣conditional␣coverage␣test’)

# Student-t copula

VaR_t = copula_results[’student’][’VaR’][confidence]

POF_t = kupiec_pof_test(VaR_t, L_portfolio, alpha)

LR_ind_t = christoffersen(VaR_t, L_portfolio)

chi_square_test(LR_ind_t + POF_t, df=2, method_name=’Portfolio␣-␣Student-t␣Copula’,

test_name=’Christoffersen␣conditional␣coverage␣test’)

# %%

print("-"*60)

print("COPULA-BASED␣PORTFOLIO␣ES␣BACKTESTING␣(Acerbi-Szekely␣Z1␣Test)")

print("-"*60)

asset_returns = log_returns[TICKERS] # full asset returns

portfolio_loss = L_portfolio # align with rolling VaR/ES

for confidence in CONFIDENCE:

alpha = 1 - confidence

print(f"\n{’-’*60}")

print(f"Confidence␣Level:␣{int(confidence*100)}%")

print(f"{’-’*60}\n")

# Align VaR/ES first

VaR_gauss = copula_results[’gaussian’][’VaR’][confidence]

ES_gauss = copula_results[’gaussian’][’ES’][confidence]

# Gaussian copula ES backtest

Z_1_sim_gauss = monte_carlo_es_backtest_z1_copula(

VaR_gauss, ES_gauss, portfolio_loss, asset_returns, window=WINDOW,

copula_type=’gaussian’, M=1000

)

real_Z1_gauss = es_backtest_z1(VaR_gauss, ES_gauss, portfolio_loss)

p_gauss = (np.sum(Z_1_sim_gauss >= real_Z1_gauss) + 1) / (len(Z_1_sim_gauss) + 1)

print(f"The␣test␣statistic␣and␣p␣value␣for␣Portfolio␣-␣Gaussian␣Copula␣are␣:␣"

f"Z1_stat␣{real_Z1_gauss},␣p_value␣{p_gauss}")

if p_gauss < 0.05:

print("Reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣Portfolio␣-␣Gaussian␣

Copula.\n")

else:

print("Fail␣to␣reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣Portfolio␣-␣

Gaussian␣Copula.\n")

# Student-t copula ES backtest

VaR_student = copula_results[’student’][’VaR’][confidence]

ES_student = copula_results[’student’][’ES’][confidence]

Z_1_sim_student = monte_carlo_es_backtest_z1_copula(
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VaR_student, ES_student, portfolio_loss, asset_returns, window=WINDOW,

copula_type=’student’, M=1000

)

real_Z1_student = es_backtest_z1(VaR_student, ES_student, portfolio_loss)

p_student = (np.sum(Z_1_sim_student >= real_Z1_student) + 1) / (len(Z_1_sim_student) +

1)

print(f"The␣test␣statistic␣and␣p␣value␣for␣Portfolio␣-␣Student␣Copula␣are␣:␣"

f"Z1_stat␣{real_Z1_student},␣p_value␣{p_student}")

if p_student < 0.05:

print("Reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣Portfolio␣-␣Student␣

Copula.\n")

else:

print("Fail␣to␣reject␣the␣null␣hypothesis␣at␣5%␣significance␣level␣for␣Portfolio␣-␣

Student␣Copula.\n")

# %%

def compute_backtest_statistics(VaR_forecasts,

ES_forecasts,

actual_losses,

alpha,

sampler_fn,

window,

M=1000):

"""

␣␣␣␣Compute␣VaR␣and␣ES␣backtest␣statistics␣for␣a␣given␣method.

␣␣␣␣"""

# ---------- VaR-based statistics ----------

valid_idx = VaR_forecasts.notna() & actual_losses.notna()

VaR_clean = VaR_forecasts[valid_idx]

L_clean = actual_losses[valid_idx]

violations = (L_clean > VaR_clean).astype(int)

n_violations = violations.sum()

n_total = len(violations)

violation_rate = n_violations / n_total if n_total > 0 else np.nan

expected_violations = alpha * n_total

# Kupiec POF

POF = kupiec_pof_test(VaR_clean, L_clean, alpha)

# Christoffersen independence component

LR_ind = christoffersen(VaR_clean, L_clean)

# ---------- NEW: p-values ----------

POF_p_value = chi_square_test(

POF, df=1,

method_name=’Portfolio’,

test_name=’POF␣test’

)

Christoffersen_p_value = chi_square_test(

LR_ind + POF, df=2,

method_name=’Portfolio’,

test_name=’Christoffersen␣test’

)

# ---------- ES-based statistics ----------

Z1_simulated = monte_carlo_es_backtest_z1(

VaR_forecasts, ES_forecasts, actual_losses,
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sampler_fn, window=window, M=M

)

Z1_real = es_backtest_z1(VaR_forecasts, ES_forecasts, actual_losses)

Z1_p_value = (Z1_simulated >= Z1_real).sum() / len(Z1_simulated)

return {

"n_violations": n_violations,

"n_total": n_total,

"violation_rate": violation_rate,

"expected_rate": alpha,

"expected_violations": expected_violations,

"POF_statistic": POF,

"POF_p_value": POF_p_value, # NEW

"Christoffersen_statistic": LR_ind + POF,

"Christoffersen_p_value": Christoffersen_p_value, # NEW

"Z1_stat": Z1_real,

"Z1_p_value": Z1_p_value,

}

# %%

print("-"*60)

print("COMPREHENSIVE␣COMPARISON:␣UNIVARIATE␣vs␣COPULA-BASED␣APPROACHES")

print("-"*60)

comparison_results = []

# Full asset returns and portfolio loss (for copula ES MC)

asset_returns = log_returns[TICKERS]

portfolio_loss = L_portfolio.sort_index()

# Choose a sampler for the VaR null for copulas (only used inside

compute_backtest_statistics for ES,

# but we will override ES, so this can be anything reasonable, e.g. historical)

sampler_for_VaR = sampler[’historical’]

for confidence in CONFIDENCE:

alpha = 1 - confidence

# ---------- Univariate methods ----------

for method in METHODS:

VaR_forecast = portfolio_rolling_results[method][’VaR’][confidence]

ES_forecast = portfolio_rolling_results[method][’ES’][confidence]

stats = compute_backtest_statistics(

VaR_forecast,

ES_forecast,

portfolio_loss,

alpha,

sampler_fn=sampler[method],

window=WINDOW,

M=1000

)

comparison_results.append({

"Confidence": f"{int(confidence*100)}%",

"Approach": "Univariate",

"Method": method,

"Violations": stats["n_violations"],

"Total": stats["n_total"],

"Violation␣Rate": f"{stats[’violation_rate’]:.4f}",
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"Expected␣Rate": f"{stats[’expected_rate’]:.4f}",

"POF␣Stat": f"{stats[’POF_statistic’]:.4f}",

"POF␣p-value": f"{stats[’POF_p_value’]:.4f}",

"Christoffersen␣Stat": f"{stats[’Christoffersen_statistic’]:.4f}",

"Christoffersen␣p-value": f"{stats[’Christoffersen_p_value’]:.4f}",

"Z1␣Stat": f"{stats[’Z1_stat’]:.4f}",

"Z1␣p-value": f"{stats[’Z1_p_value’]:.4f}",

})

# ---------- Copula-based methods ----------

for copula_type in ["gaussian", "student"]:

VaR_forecast = copula_results[copula_type][’VaR’][confidence]

ES_forecast = copula_results[copula_type][’ES’][confidence]

# 1) VaR-based statistics from the generic function

stats = compute_backtest_statistics(

VaR_forecast,

ES_forecast,

portfolio_loss,

alpha,

sampler_fn=sampler_for_VaR, # only used for ES in generic MC, but we’ll override

ES

window=WINDOW,

M=1000

)

# 2) Override ES statistics using copula-based Monte Carlo

Z1_sim = monte_carlo_es_backtest_z1_copula(

VaR_forecast,

ES_forecast,

portfolio_loss,

asset_returns,

window=WINDOW,

copula_type=copula_type,

M=1000

)

Z1_real = es_backtest_z1(VaR_forecast, ES_forecast, portfolio_loss)

Z1_p_value = (Z1_sim >= Z1_real).sum() / len(Z1_sim)

stats["Z1_stat"] = Z1_real

stats["Z1_p_value"] = Z1_p_value

copula_name = "Gaussian␣Copula" if copula_type == "gaussian" else "Student-t␣Copula"

comparison_results.append({

"Confidence": f"{int(confidence*100)}%",

"Approach": "Copula",

"Method": copula_name,

"Violations": stats["n_violations"],

"Total": stats["n_total"],

"Violation␣Rate": f"{stats[’violation_rate’]:.4f}",

"Expected␣Rate": f"{stats[’expected_rate’]:.4f}",

"POF␣Stat": f"{stats[’POF_statistic’]:.4f}",

"POF␣p-value": f"{stats[’POF_p_value’]:.4f}",

"Christoffersen␣Stat": f"{stats[’Christoffersen_statistic’]:.4f}",

"Christoffersen␣p-value": f"{stats[’Christoffersen_p_value’]:.4f}",

"Z1␣Stat": f"{stats[’Z1_stat’]:.4f}",

"Z1␣p-value": f"{stats[’Z1_p_value’]:.4f}",

})
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# Create DataFrame for better visualization

comparison_df = pd.DataFrame(comparison_results)

print("\nSUMMARY␣TABLE:")

display(comparison_df)

# Save to CSV

comparison_df.to_csv(OUT_DIR / ’portfolio_var_es_comparison.csv’, index=False)

print(f"\nComparison␣table␣saved␣to␣{OUT_DIR␣/␣’portfolio_var_es_comparison.csv’}")

# %%

# Visualize violation rates comparison

fig, axes = plt.subplots(1, 2, figsize=(16, 6))

for i, confidence in enumerate(CONFIDENCE):

ax = axes[i]

alpha = 1 - confidence

# Filter data for this confidence level

data = comparison_df[comparison_df[’Confidence’] == f"{int(confidence*100)}%"].copy()

# Convert violation rate to float for plotting

data[’Violation␣Rate␣Numeric’] = data[’Violation␣Rate’].astype(float)

data[’Method_Full’] = data[’Approach’] + ’␣-␣’ + data[’Method’]

# Create bar plot

x_pos = np.arange(len(data))

bars = ax.bar(x_pos, data[’Violation␣Rate␣Numeric’], alpha=0.7, edgecolor=’black’)

# Color bars by approach

colors = [’steelblue’ if approach == ’Univariate’ else ’coral’

for approach in data[’Approach’]]

for bar, color in zip(bars, colors):

bar.set_color(color)

# Add expected rate line

ax.axhline(y=alpha, color=’red’, linestyle=’--’, linewidth=2, label=f’Expected␣Rate␣({

alpha:.2f})’)

# Formatting

ax.set_xticks(x_pos)

ax.set_xticklabels(data[’Method’], rotation=45, ha=’right’)

ax.set_ylabel(’Violation␣Rate’, fontsize=12)

ax.set_title(f’VaR␣Violation␣Rates␣-␣{int(confidence*100)}%␣Confidence’, fontsize=14,

fontweight=’bold’)

ax.grid(True, alpha=0.3, axis=’y’)

ax.legend()

# Add value labels on bars

for j, (idx, row) in enumerate(data.iterrows()):

height = row[’Violation␣Rate␣Numeric’]

ax.text(j, height + 0.002, f"{height:.3f}", ha=’center’, va=’bottom’, fontsize=9)

# Add legend for approaches

legend_elements = [

Patch(facecolor=’steelblue’, edgecolor=’black’, label=’Univariate␣Methods’),

Patch(facecolor=’coral’, edgecolor=’black’, label=’Copula-Based␣Methods’)

]

fig.legend(handles=legend_elements, loc=’upper␣center’, ncol=2, frameon=True, bbox_to_anchor

=(0.5, 0.98))
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plt.tight_layout(rect=[0, 0, 1, 0.96])

plt.savefig(OUT_DIR / ’portfolio_var_violation_rates.png’)

plt.show()

# %% [markdown]

# At the 95% confidence level, both Gaussian and Student-*t* copulas exhibit violation rates

that exceed the theoretical benchmark, performing similarly to or slightly worse than

several univariate methods. At the 99% level, copula models show a modest improvement

relative to some univariate approaches; however, their violation rates remain above the

expected threshold, indicating persistent underestimation of tail risk.

#

# In contrast, univariate models that account for time-varying volatility, in particular the

Filtered Historical Simulation (FHS) and parametric GARCH, achieve violation rates

closest to the theoretical expectations across both confidence levels. This suggests

that, for our particular portfolio and the period under study, modeling temporal

dependence and volatility clustering is more impactful for accurate risk measurement

than modeling cross-sectional dependence alone.

# %%

def plot_portfolio_var_methods_grid(L_portfolio,

portfolio_rolling_results,

copula_results=None,

methods_univariate=None,

methods_copula=None,

confidences=(0.95, 0.99)):

"""

␣␣␣␣Plot␣portfolio␣losses␣vs␣VaR␣for␣each␣method␣in␣a␣grid:

␣␣␣␣one␣row␣per␣method,␣one␣column␣per␣confidence␣level.

␣␣␣␣Parameters

␣␣␣␣----------

␣␣␣␣L_portfolio␣:␣pd.Series

␣␣␣␣␣␣␣␣Portfolio␣losses␣time␣series␣(e.g.,␣L_portfolio␣=␣-portfolio_returns).

␣␣␣␣portfolio_rolling_results␣:␣dict-like

␣␣␣␣␣␣␣␣Output␣of␣rolling_forecast␣for␣the␣portfolio,␣indexed␣as:

␣␣␣␣␣␣␣␣portfolio_rolling_results[method][’VaR’][confidence].

␣␣␣␣copula_results␣:␣dict,␣optional

␣␣␣␣␣␣␣␣Output␣of␣copula_portfolio_var_es,␣with␣keys␣’gaussian’␣and␣’student’,

␣␣␣␣␣␣␣␣accessed␣as␣copula_results[copula_type][’VaR’][confidence].

␣␣␣␣methods_univariate␣:␣list␣of␣str,␣optional

␣␣␣␣␣␣␣␣List␣of␣univariate␣method␣names␣to␣include,␣e.g.

␣␣␣␣␣␣␣␣["historical",␣"fhs",␣"gaussian",␣"student",␣"parametric"].

␣␣␣␣methods_copula␣:␣list␣of␣str,␣optional

␣␣␣␣␣␣␣␣List␣of␣copula␣method␣keys,␣subset␣of␣["gaussian",␣"student"].

␣␣␣␣confidences␣:␣iterable␣of␣float

␣␣␣␣␣␣␣␣Confidence␣levels␣to␣plot␣(e.g.,␣(0.95,␣0.99)).

␣␣␣␣"""

confidences = list(confidences)

n_conf = len(confidences)

if methods_univariate is None:

methods_univariate = list(portfolio_rolling_results.keys())

if (copula_results is not None) and (methods_copula is None):

methods_copula = ["gaussian", "student"]

elif copula_results is None:

methods_copula = []

# Build list of (source_type, key, label)

# source_type: ’univariate’ or ’copula’
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method_list = []

# Univariate methods

for method in methods_univariate:

method_list.append(("univariate", method, f"Univariate␣-␣{method}"))

# Copula methods

for cop in methods_copula:

label = "Gaussian␣Copula" if cop == "gaussian" else "Student-t␣Copula"

method_list.append(("copula", cop, label))

n_methods = len(method_list)

if n_methods == 0:

print("No␣methods␣provided␣to␣plot.")

return

fig, axes = plt.subplots(

n_methods, n_conf,

figsize=(6 * n_conf, 3 * n_methods),

sharex=True

)

# Ensure axes is 2D

if n_methods == 1 and n_conf == 1:

axes = np.array([[axes]])

elif n_methods == 1:

axes = axes.reshape(1, -1)

elif n_conf == 1:

axes = axes.reshape(-1, 1)

for i, (src_type, key, base_label) in enumerate(method_list):

for j, conf in enumerate(confidences):

ax = axes[i, j]

# Get VaR series for this method & confidence

if src_type == "univariate":

VaR_series = portfolio_rolling_results[key]["VaR"][conf].dropna()

else: # copula

VaR_series = copula_results[key]["VaR"][conf].dropna()

# Align portfolio loss with VaR series

common_idx = L_portfolio.index.intersection(VaR_series.index)

L_aligned = L_portfolio.loc[common_idx]

V_aligned = VaR_series.loc[common_idx]

# Plot full loss series (context)

ax.plot(

L_portfolio.index, L_portfolio.values,

color="black", alpha=0.35, linewidth=0.9,

label="Portfolio␣Loss"

)

# Plot VaR

ax.plot(

V_aligned.index, V_aligned.values,

linewidth=1.6,

label=f"{base_label}␣VaR␣({int(conf*100)}%)"

)

# Violations

violations = L_aligned > V_aligned
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ax.scatter(

L_aligned[violations].index,

L_aligned[violations].values,

color="red", marker="x", s=50,

label="Violations"

)

# Labels / titles

if j == 0:

ax.set_ylabel("Loss␣/␣VaR", fontsize=11)

ax.set_title(

f"{base_label}␣-␣{int(conf*100)}%",

fontsize=13, fontweight="bold"

)

# Grid & legend

ax.grid(alpha=0.3)

ax.legend(fontsize=8, loc="upper␣left")

# Date formatting: only bottom row shows tick labels

if i == n_methods - 1:

ax.xaxis.set_major_locator(mdates.MonthLocator(interval=3))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m’))

plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)

else:

ax.set_xticklabels([])

fig.suptitle(

"Portfolio␣Rolling␣VaR␣vs␣Realized␣Losses\nMethods␣x␣Confidence␣Levels",

fontsize=16, fontweight="bold",

y=0.995 # move title closer to the top

)

plt.tight_layout(pad=1.0) # reduce padding between title and axes

fig.subplots_adjust(top=0.95) # key line: moves plots upward

plt.savefig(OUT_DIR / ’portfolio_var_portfolio_methods.png’)

plt.show()

# %%

methods_univariate = ["historical", "fhs", "gaussian", "student", "parametric"]

methods_copula = ["gaussian", "student"] # keys in copula_results

plot_portfolio_var_methods_grid(

L_portfolio=L_portfolio,

portfolio_rolling_results=portfolio_rolling_results,

copula_results=copula_results,

methods_univariate=methods_univariate,

methods_copula=methods_copula,

confidences=(0.95, 0.99)

)

# %% [markdown]

# The figure presents the realized portfolio losses alongside the Value-at-Risk (VaR)

estimates produced by different methods, at both **95%** and **99%** confidence levels.

Red crosses indicate violations instances where the realized loss exceeds the forecasted

VaR. These plots help assess the temporal behavior, responsiveness, and adequacy of

each risk model.

#

# A well-calibrated VaR model should:

#

# - Adjust dynamically to changing market volatility,

# - Anticipate periods of elevated risk,

68



# - Produce violations at a frequency consistent with the chosen confidence level (5% or 1%)

,

# - Avoid large clusters of violations during stress periods.

#

# A visual inspection reveals that copula-based approaches do not systematically outperform

univariate models such as FHS or GARCH-type specifications. Although copulas provide a

more flexible framework to model cross-sectional dependence, their VaR curves often

remain too smooth and fail to adjust rapidly during periods of heightened volatility. As

a result, copula-based VaR estimates are frequently exceeded during market stress,

leading to a substantial number of violations.

#

# In contrast, univariate methods that explicitly incorporate time-varying volatility,

particularly FHS, tend to align more closely with the observed loss dynamics. These

models react more promptly to volatility bursts and adjust their risk estimates

accordingly, which explains their lower violation frequencies. This behavior is

especially visible during the sharp increase in losses towards the end of the sample:

while FHS-based VaR rapidly escalates to reflect the changing risk environment, copula-

based VaR remains comparatively muted and is repeatedly breached.

# %%

def plot_portfolio_es_methods_grid(L_portfolio,

portfolio_rolling_results,

copula_results=None,

methods_univariate=None,

methods_copula=None,

confidences=(0.95, 0.99)):

"""

␣␣␣␣Plot␣portfolio␣losses␣vs␣ES␣for␣each␣method␣in␣a␣grid:

␣␣␣␣one␣row␣per␣method,␣one␣column␣per␣confidence␣level.

␣␣␣␣Parameters

␣␣␣␣----------

␣␣␣␣L_portfolio␣:␣pd.Series

␣␣␣␣␣␣␣␣Portfolio␣losses␣time␣series␣(e.g.,␣L_portfolio␣=␣-portfolio_returns).

␣␣␣␣portfolio_rolling_results␣:␣dict-like

␣␣␣␣␣␣␣␣Output␣of␣rolling_forecast␣for␣the␣portfolio,␣indexed␣as:

␣␣␣␣␣␣␣␣portfolio_rolling_results[method][’ES’][confidence].

␣␣␣␣copula_results␣:␣dict,␣optional

␣␣␣␣␣␣␣␣Output␣of␣copula_portfolio_var_es,␣with␣keys␣’gaussian’␣and␣’student’,

␣␣␣␣␣␣␣␣accessed␣as␣copula_results[copula_type][’ES’][confidence].

␣␣␣␣methods_univariate␣:␣list␣of␣str,␣optional

␣␣␣␣␣␣␣␣List␣of␣univariate␣method␣names␣to␣include,␣e.g.

␣␣␣␣␣␣␣␣["historical",␣"fhs",␣"gaussian",␣"student",␣"parametric"].

␣␣␣␣methods_copula␣:␣list␣of␣str,␣optional

␣␣␣␣␣␣␣␣List␣of␣copula␣method␣keys,␣subset␣of␣["gaussian",␣"student"].

␣␣␣␣confidences␣:␣iterable␣of␣float

␣␣␣␣␣␣␣␣Confidence␣levels␣to␣plot␣(e.g.,␣(0.95,␣0.99)).

␣␣␣␣"""

confidences = list(confidences)

n_conf = len(confidences)

if methods_univariate is None:

methods_univariate = list(portfolio_rolling_results.keys())

if (copula_results is not None) and (methods_copula is None):

methods_copula = ["gaussian", "student"]

elif copula_results is None:

methods_copula = []

# Build list of (source_type, key, label)
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method_list = []

# Univariate methods

for method in methods_univariate:

method_list.append(("univariate", method, f"Univariate␣-␣{method}"))

# Copula methods

for cop in methods_copula:

label = "Gaussian␣Copula" if cop == "gaussian" else "Student-t␣Copula"

method_list.append(("copula", cop, label))

n_methods = len(method_list)

if n_methods == 0:

print("No␣methods␣provided␣to␣plot.")

return

fig, axes = plt.subplots(

n_methods, n_conf,

figsize=(6 * n_conf, 3 * n_methods),

sharex=True

)

# Ensure axes is 2D

if n_methods == 1 and n_conf == 1:

axes = np.array([[axes]])

elif n_methods == 1:

axes = axes.reshape(1, -1)

elif n_conf == 1:

axes = axes.reshape(-1, 1)

for i, (src_type, key, base_label) in enumerate(method_list):

for j, conf in enumerate(confidences):

ax = axes[i, j]

# Get ES series for this method & confidence

if src_type == "univariate":

ES_series = portfolio_rolling_results[key]["ES"][conf].dropna()

else: # copula

ES_series = copula_results[key]["ES"][conf].dropna()

# Align portfolio loss with ES series

common_idx = L_portfolio.index.intersection(ES_series.index)

L_aligned = L_portfolio.loc[common_idx]

ES_aligned = ES_series.loc[common_idx]

# Plot full loss series (context)

ax.plot(

L_portfolio.index, L_portfolio.values,

color="black", alpha=0.35, linewidth=0.9,

label="Portfolio␣Loss"

)

# Plot ES

ax.plot(

ES_aligned.index, ES_aligned.values,

linewidth=1.6, linestyle="--",

label=f"{base_label}␣ES␣({int(conf*100)}%)"

)

# Violations: loss > ES

violations = L_aligned > ES_aligned
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ax.scatter(

L_aligned[violations].index,

L_aligned[violations].values,

color="red", marker="x", s=50,

label="Loss␣>␣ES"

)

# Labels / titles

if j == 0:

ax.set_ylabel("Loss␣/␣ES", fontsize=11)

ax.set_title(

f"{base_label}␣-␣{int(conf*100)}%",

fontsize=13, fontweight="bold"

)

# Grid & legend

ax.grid(alpha=0.3)

ax.legend(fontsize=8, loc="upper␣left")

# Date formatting: only bottom row shows tick labels

if i == n_methods - 1:

ax.xaxis.set_major_locator(mdates.MonthLocator(interval=3))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m’))

plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)

else:

ax.set_xticklabels([])

fig.suptitle(

"Portfolio␣Rolling␣ES␣vs␣Realized␣Losses\nMethods␣x␣Confidence␣Levels",

fontsize=16, fontweight="bold",

y=0.995 # move title closer to the top

)

plt.tight_layout(pad=1.0)

fig.subplots_adjust(top=0.95)

plt.savefig(OUT_DIR / ’portfolio_es_portfolio_methods.png’)

plt.show()

# %%

methods_univariate = ["historical", "fhs", "gaussian", "student", "parametric"]

methods_copula = ["gaussian", "student"] # keys in copula_results

plot_portfolio_es_methods_grid(

L_portfolio=L_portfolio,

portfolio_rolling_results=portfolio_rolling_results,

copula_results=copula_results,

methods_univariate=methods_univariate,

methods_copula=methods_copula,

confidences=(0.95, 0.99)

)

# %% [markdown]

# Expected Shortfall (ES) measures the *average loss* in the tail beyond the VaR threshold.

A well-calibrated ES model should therefore:

#

# - **Consistently exceed realized losses** during normal periods, since ES is a *worst-case

conditional loss*,

# - **Increase sharply during market stress**, capturing escalating downside risk,

# - **Avoid repeated exceedances**losses should only rarely be higher than ES,

# - Reflect changes in **both volatility and dependence** across assets, since ES is highly

sensitive to tail co-movements.

#
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# In short, ES should form a **protective upper boundary** for losses in extreme conditions.

If losses frequently cross above ES, the model is underestimating tail risk.

#

# These plots above compare realized portfolio losses with Expected Shortfall (ES) forecasts

from different univariate and copula-based models at **95%** and **99%** confidence

levels. Red crosses indicate instances where losses exceed the ES estimate.

#

# Similar to the VaR analysis, the copula-based approaches do not demonstrate a clear

performance advantage over univariate methods. Although ES is a coherent risk measure

and theoretically more sensitive to tail events, the copula-based ES estimates remain

relatively stable throughout the sample and fail to escalate during periods of

heightened market stress. Consequently, several realized losses exceed the copula-based

ES thresholds, indicating that these models tend to underestimate tail risk.

#

# By contrast, univariate models that incorporate time-varying volatility, particularly the

Filtered Historical Simulation (FHS) and, to a lesser extent, parametric GARCH-type,

provide more reactive ES estimates. These methods adjust rapidly to volatility bursts,

producing higher ES values when market conditions deteriorate. This dynamic behavior

results in fewer ES breaches, especially in the latter part of the sample, where the

portfolio experiences the most extreme losses. The responsiveness of FHS to evolving

volatility patterns highlights the importance of modeling temporal dependence and

volatility clustering when forecasting downside risk.

# %% [markdown]

# ## Conclusion

#

# The objective of this analysis was to assess whether dependence modeling improves

portfolio risk estimation. While copula-based approaches explicitly capture the cross-

sectional dependence structure between assets, the empirical results do not provide

clear evidence of superior performance compared to univariate models.

#

# An explanation for these findings lies in the characteristics of the underlying portfolio.

The three assets considered do not exhibit pronounced dependence, which limits the

potential gains from employing copula-based models. In such a context, explicitly

modeling cross-sectional dependence offers little improvement. Moreover, copulas do not

account for volatility clustering or sudden volatility bursts if we give them simple

Gaussian or Student-$t$ marginals, unlike FHS and GARCH. Since extreme losses during the

sample period appear to be primarily driven by volatility dynamics rather than

dependence structures, correctly modeling time-varying volatility proves more important

than capturing marginal dependence. Consequently, the relative underperformance of

copula-based methods is consistent with the underlying data-generating process and the

nature of the portfolio risk.

#

# Therefore, we cannot conclude that dependence modeling via copulas systematically improves

the results. Copula-based methods do not outperform well-specified univariate models

such as FHS, and their benefits become visible only at extreme confidence levels without

consistently translating into better backtesting outcomes. While copulas generally

perform better than some simpler univariate approaches, this incremental improvement

remains insufficient to claim superiority over methods that explicitly model volatility

dynamics. As a result, the evidence does not support the claim that copulas provide

superior VaR or ES estimates in this setting.
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