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1 Exercise 1: Empirical Stylized Facts

1.A Log-returns

We collected daily adjusted closing prices for AAPL, META, and JPM between January 1, 2023
and June 30, 2025 using the yfinance Python package. The daily log-returns were computed as:

(4)
R = log (PZ) ) , i€ {AAPL,META, JPM},
)

where Pt(z) denotes the adjusted closing price of asset ¢ at day ¢. Missing data were removed after
aligning the series by date.

Figure 1 displays the resulting log-return series. As expected, returns fluctuate around zero and show
no persistent trend, consistent with weak-form market efficiency. However, volatility is clearly time-
varying: META exhibits the largest fluctuations, AAPL intermediate, and JPM the lowest. Periods of
high volatility tend to cluster together, illustrating the well-known phenomenon of volatility clustering.

1.B ACF and CCF

To study temporal and cross-asset dependence, we computed autocorrelation and cross-correlation
functions for both raw and absolute returns. The empirical autocorrelation function (ACF) for asset
i at lag h is defined as:

) Cov(REi), Rg?h)
Pi = : —>
\/Var(Rgz)) Var(Rg? )

h=0,1,...,25.

The cross-correlation between two assets ¢ and j is given by:
~ Cov(r{,RY))
\/Var(Rgi)) Var(RE{)h)

pij(h)

Both ACFs and CCFs were also computed using absolute returns ]R§1)| to analyze volatility spillovers.
Figure 2 and Figure 3 shows the results.

The autocorrelation of log returns for AAPL, META, and JPM shows almost no correlation after
lag 0. This indicates that past returns have little predictive power for future returns, confirming
the weak linear dependence typical of stock prices. Absolute returns exhibit stronger but still week
autocorrelations, with lag 1 correlations around 0.2 for AAPL.

Cross-correlations between different stocks’ log returns are moderate at lag 0 (roughly 0.27-0.41)
and decay quickly for higher lags. This suggests some contemporaneous co-movement across assets,
particularly between AAPL and META, but limited predictive influence across weeks.
Cross-correlations of absolute returns are weaker than the autocorrelations of absolute returns, typ-
ically ranging from 0.05 to 0.15 at lag 0. However, they remain positive for most lags, indicating
modest volatility spillover across assets.

1.C QQ-plots and Jarque—Bera test

The normality of log-returns was examined through both graphical and statistical methods. Figure 4
presents QQ-plots comparing the empirical quantiles of returns with those from a standard normal
distribution. For all three assets, the curves deviate from the 45° line: points lie below the line on the
left tail and above it on the right, indicating left skewness and excess kurtosis (fat tails).

To confirm this, we applied the Jarque—Bera test, which jointly tests skewness and kurtosis deviations

from the normal distribution: ( )2
n K -3
B=—(8%24+— "/
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Figure 1: Daily log-returns for AAPL, META, and JPM over the period January 2023 — June 2025.
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Figure 2: Autocorrelation function of raw and absolute log-returns up to lag 25.
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Table 1: Jarque—Bera normality test results.
Asset  JB Statistic p-value Normality (5%)
AAPL 3619.30 0.000 Reject
META 7608.77 0.000 Reject
JPM 2203.51 0.000 Reject
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where S is the sample skewness and K the sample kurtosis. The null hypothesis Hp: ”the data follow
a normal distribution” was rejected for all assets at the 5% significance level (Table 1).

In summary, the log-returns exhibit the main empirical stylized facts of financial data: (i) absence of
linear autocorrelation, (ii) volatility clustering, (iii) cross-asset volatility dependence, and (iv) non-
normal, heavy-tailed return distributions.

2 Exercise 2: Value-at-Risk and Expected Shortfall

Single-window modeling: VaR, ES, and distributions. Analyze each asset separately on the
first estimation window of length W = 252, i.e., approximately one trading year. Clearly describe
your fitting procedure and any choices made. Use the loss convention Ly = — Ry, fort =1,..., W
(i.e., right tail is risky). Fit and compare the following models and report the estimated 1-day
ahead VaR and ES at levels a = 95% and a = 99% To compare different fitted loss distributions,
plot their estimated probability density functions (pdfs) in a single plot. This allows you to visually
assess the fit and tail behavior.

a) Historical simulation: obtain the empirical cdf and use it to compute the VaR/ES of L.
b) Gaussian: fit (u,0) and use the closed-form solutions for VaR/ES.

c) Student-t: fit (v,u, o) using maximum likelihood estimation (MLE) and use the closed-form
solutions for VaR/ES; discuss the impact of degrees of freedom on tails.

d) Conditional parametric: the previous models assume i.i.d. losses, now we make use of condi-
tional models. The mean is defined through an autoregressive model AR(p) where you choose
p based on the autocorrelation function (ACF) from 1.b) and the partial ACF. The volatility
is modeled through a GARCH(1,1) model, with Gaussian innovations. Use the fitted model
to obtain 1-step-ahead VaR/ES forecasts based on the conditional mean fipy11 and volatility
w41 estimates from the AR(p) and GARCH(1,1) parts, respectively.

e) Filtered Historical Simulation (FHS): describe and implement the FHS procedure following
Barone-Adesi et al. (1999) or a similar reference. Using the fitted AR(p) + GARCH(1,1)
approach from 2.d), obtain the model’s residuals é and standardized residuals €; = é,/5,
t=1,...,W. Instead of assuming a parametric distribution for the innovation éy; (such
as in 2.d), employ the non-parametric bootstrap (i.e., resampling M = 1000 values with
replacement) from the constructed sample of € to obtain the 1-step-ahead VaR/ES forecasts.

In this exercise, we compute Value-at-Risk (VaR) and Expected Shortfall (ES) for the daily losses
Lt = _Rt7

where R; are the log-returns from Exercise 1. We consider an estimation window of W = 252 days
and compare five approaches: historical simulation, Gaussian, Student-t, conditional parametric (AR
+ GARCH), and filtered historical simulation (FHS).

2.A Historical Simulation

The historical simulation approach uses the empirical cumulative distribution function (CDF) of past
losses. For a given confidence level «, the VaR is defined as the a-quantile of the empirical distribution:

VaR!St — inf{z | Fp(z) > a}.
The Expected Shortfall is the conditional expectation of losses exceeding the VaR:

ESMSt = E[L | L > VaR!S).



2.B Gaussian Model

Assuming losses follow a normal distribution L; ~ A (u, 02), we fit the mean y and standard deviation
o by maximum likelihood. The closed-form VaR and ES formulas are:

VaR$S = 1 + 0@ 1 (a),

ESSauss =+ O—¢((I)71<O‘))7
11—«

where ®~! and ¢ denote the inverse CDF and PDF of the standard normal distribution, respectively.

2.C Student-t Model

To capture heavy tails, we fit a Student-t distribution with degrees of freedom v, location u;, and
scale oy using maximum likelihood. VaR and ES are:

VaR!, = i + oyt ' (o),
v+ (1t (@) t(t, (@)
v—1 11—«

where ¢! and t,, denote the inverse CDF and PDF of the Student-t distribution.
Lower degrees of freedom v imply heavier tails, leading to higher VaR and ES estimates at high
confidence levels. This highlights the importance of modeling fat tails in financial loss distributions.

ESEY = Ut + ot

Y

2.D Conditional parametric modeling: AR(p) + GARCH(1,1)

To account for conditional dynamics in losses, we model the mean using an AR(p) process and the
volatility using a GARCH(1,1) model with Gaussian innovations.
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Figure 5: Partial autocorrelation function (PACF) of daily log-returns for AAPL, META, and JPM.
The blue shaded area represents the 95% confidence interval under the null hypothesis of no autocor-
relation.

The order p of the AR model is determined by inspecting the partial autocorrelation function (PACF)



of the log-returns in Figure 5. All PACF coefficients for lags greater than zero lie within the 95%
confidence band and fluctuate around zero, indicating the absence of significant linear dependence
at positive lags. Therefore, an AR(0) specification, corresponding to a pure white noise model, is
sufficient to capture the linear structure in the mean of the losses.

Let L; denote the loss at time ¢. Denoting by w41 and Gy 41 the 1-step-ahead forecasts of the
conditional mean and volatility from the fitted AR(0) + GARCH(1,1) model, the conditional Value-
at-Risk (VaR) and Expected Shortfall (ES) are computed using the standard closed-form VaR and ES

formulas: .
R . R o P«
VaREOHd = w1 T OW 41 Zas ESZond = pw+1 + WHl(b(_ o ( )),

where ¢(-) is the standard normal density.
This approach captures both the conditional mean and conditional heteroskedasticity in the loss series.

2.E Filtered Historical Simulation (FHS)

Filtered Historical Simulation combines the conditional AR(0) + GARCH(1,1) model with a non-
parametric treatment of standardized residuals. First, we fit the AR(0) model to the losses and
compute residuals &, = L; — ji;. Then, a GARCH(1,1) model is fitted to the residuals to estimate
conditional volatility 6; and obtain standardized residuals:

Instead of assuming a parametric distribution for the innovation €y 41, we apply a non-parametric
bootstrap: we resample M = 1000 values with replacement from the standardized residuals to generate
1-step-ahead scenarios. The simulated losses are then reconstructed as:

* N A ~%
Ly 1 = w41 + 6w Sy g1

Finally, the 1-step-ahead VaR and ES forecasts are obtained from the empirical quantiles and averages
of the simulated loss distribution:

VaREMS = Quantile, (L) = inf{z | Fry,  (2) = o},

ESE™S = E[LYy 4 | Ly, > VaRE™S)

This method combines the benefits of conditional modeling (capturing time-varying volatility and
mean) with the flexibility of a non-parametric distribution for innovations, providing a more realistic
estimation of tail risk.

2.F Results

Table 2 and Table 3 report the estimated VaR and ES for each asset and confidence level. Figure 6
shows the estimated PDFs of losses.

Note that for the Conditional parametric model, the PDF used to compute VaR and ES is theoretical
and conditional on the information available at time W. In contrast, the FHS approach estimates
the next-day loss distribution non-parametrically via simulation of standardized residuals, rather than
using an analytical formula. Historical simulation also relies on an empirical distribution and a kernel
density estimate is used for visualization.

Across all three assets and both confidence levels, the five methods produce VaR estimates that lie
within a comparable numerical range. This indicates that, despite relying on different distributional
assumptions, the models agree on the order of magnitude of tail losses. But Gaussian VaR is system-
atically lower due to thin tails, while Student-t and Historical tend to produce higher values at the
99% level. FHS and the conditional parametric model generally fall between these extremes.



Table 2: Value-at-Risk (VaR) results for the first 252-day window.

Ticker Alpha Historical Gaussian Student-t Parametric FHS
AAPL 95% 0.017587 0.019421 0.018856 0.019611 0.017004
99% 0.032997 0.028092 0.030776 0.028361 0.028708
META 95% 0.027310 0.035232 0.030027 0.031416 0.024515
99% 0.043077 0.051512 0.053435 0.046116 0.036081
IPM 95% 0.018300 0.020292 0.017892 0.014451 0.011423
99% 0.037581 0.029149 0.034002 0.020888 0.024574

Table 3: Expected Shortfall (ES) results for the first 252-day window.

Ticker Alpha Historical Gaussian Student-t Parametric FHS
AAPL 95% 0.026807 0.024738 0.026424 0.024976  0.025729
99% 0.040701 0.032404 0.039146 0.032712 0.038851
META 95% 0.035920 0.045215 0.045386 0.040429 0.031771
99% 0.044618 0.059608 0.073637 0.053425 0.039434
IPM 95% 0.030295 0.025723 0.028770 0.018398 0.018972
99% 0.047523 0.033553 0.050030 0.024089 0.028465
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Figure 6: Estimated PDF's of losses for AAPL, META, and JPM using five approaches.



The PDF plots reveal deviations from Gaussianity across assets, with all three showing heavier tails
and stronger kurtosis than the normal model can capture. Student-t and conditional parametric
approaches provide better tail fitting, while FHS most closely reproduces the empirical distributional
features. The differences across AAPL, META, and JPM further confirm that tail behaviour is asset-
dependent.

3 Exercise 3

Backtesting VaR and ES. Use a rolling window of size W = 252 to produce 1-step-ahead forecasts
of VaR/ES at the confidence levels a = 95% and a = 99% for each asset and each method from
2.a)-2.e) over the following out-of-sample period. Clearly describe your backtesting (i.e., rolling-
window) procedure: at each time ¢, fit the models on {t — W+ 1,...,t}, forecast at ¢ + 1, advance
by one day, and repeat until ¢ + 1 = 7', where T is the end of your sample. Plot the VaR forecasts
along with the realized returns. Unless otherwise stated, use 95% as the primary confidence level.

a) Implement and apply the Kupiec (1995) Proportion-Of-Failures (POF) test (unconditional
coverage) and the Christoffersen (1998) conditional coverage test (joint test of correct exception
rate and independence). Report test statistics, p-values, and discuss which models pass/fail.
Interpret whether failures are due to biased coverage or clustered exceptions.

Refer to the referenced papers for further details, and go over the brief descriptions in the
Appendix.

b) ES backtest: Describe and apply the Acerbi and Székely (2014) Z; test for ES backtesting
with M = 1000 simulations. State clearly the null and alternative hypotheses, emphasizing
that the test is primarily one-sided (detecting underestimation of ES). Discuss which models
pass/fail, report the corresponding p-values, and interpret the results.

Refer to the referenced paper for further details, and go over the brief descriptions in the
Appendix.

Backtesting our VaR and ES estimation methods is fundamental for evaluating the adequacy of the
risk model. It enables us to determine whether the predicted risk levels align with realized portfolio
losses and to identify potential misspecification in the modeling of tail events. In this section, we
perform the Kupiec Proportion-of-Failures test and the Christoffersen conditional coverage test for
the Value-at-Risk, as well as the Acerbi and Székely Z; test for Expected Shortfall.

3.A Backtesting VaR and ES backtesting procedure described

For each confidence level (95%, 99%), ticker, and method, we computed one-step-ahead VaR and ES
forecasts using a rolling window of 252 daily observations on the loss series. At each step, the model
was re-estimated on the current window and used to generate the next-day forecast. This procedure
produces a time series of VaR and ES estimates aligned with the out-of-sample period.

For 95% confidence we obtained the following VaR forecast for each ticker:

10
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From this plot, we observe that the non-parametric methods produce relatively flat VaR curves,
since they do not explicitly react to changes in volatility as it is washed out by the estimation window.
In contrast, the parametric approaches such as FHS and the conditional parametric model adjust the
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series of VaR forecasts versus realized losses.

VaR threshold dynamically and capture local volatility spikes.

The Kupiec test examines whether the observed violation rate matches the model’s nominal level,
while the Christoffersen test evaluates both correct coverage and independence of violations. Rejecting

the null hypothesis in either test therefore signals that the VaR model is incorrect.

To perform both tests, we used each model’s one-step-ahead 95% VaR forecasts. For the Kupiec
Proportion-of-Failures (POF) test, we evaluated the null hypothesis

POF ~ xi,

11




and for the Christoffersen conditional coverage test we used
POF + IND ~ x3.

Where IND is derived from the Christoffersen independence test. At the 5% significance level, we
reject the null hypothesis when the p-value is below 0.05. We backtested our VaR across all assets
using 5% significance test, and we obtained the following results:

Test statistic POF  Pvalue POF  Test statistic CD coverage Pvalue CD coverage
Ticker = Method

AAPL  historical 11.077879 8.74e-04 14.674895 6.51e-04
gaussian 7.455310 6.32e-03 9.212069 9.99e-03
student 20.031440 7.62e-06 22.561494 1.26e-05
parametric 5.389282 2.03e-02 5.425151 6.64e-02
ths 7.455310 6.32e-03 7.513060 2.34e-02

META  historical 1.073138 3.00e-01 1.273273 5.29e-01
gaussian 0.131441 7.17e-01 0.186728 9.11e-01
student 1.580101 2.09e-01 1.812080 4.04e-01
parametric 0.743120 3.89e-01 1.962968 3.75e-01
ths 0.124872 7.24e-01 0.131576 9.36e-01

JPM historical 1.580101 2.09e-01 4.263305 1.19e-01
gaussian 0.014105 9.05e-01 2.720578 2.57e-01
student 1.073138 3.00e-01 4.188907 1.23e-01
parametric 0.014105 9.05e-01 2.720578 2.57e-01
fths 2.176202 1.40e-01 4.466326 1.07e-01

Across assets, all VaR models pass both the coverage and independence tests for META and
JPM, indicating that their VaR and ES forecasts are statistically consistent with observed losses. In
contrast, every model fails for AAPL, indicating an underestimation of the tail risk. We identify

whether failures come from biased coverage or clustered exceptions by checking which test rejects the
null: Kupiec detects incorrect violation frequency, while Christoffersen’s independence test reveals
clustering, combining both indicates full model adequacy.

Since AAPL fails both the unconditional coverage test and the joint conditional coverage test for
each methods, this confirms biased coverage, indicating that the models systematically underestimate
its tail risk captured.

3.B Acerbi and Székely

Expected Shortfall is harder to backtest than VaR because ES measures the average severity of tail
losses, not the frequency of exceptions. Since ES corresponds to the conditional mean of losses beyond
the VaR , we cannot validate it simply by counting breaches, as it is done in VaR backtesting.
Acerbi and Székely use the following identity of ES for their backtesting procedure: ES,; =
—E[X¢| Xt 4+ VaRs:+ < 0] . They define an indicator function that flags the days on which the VaR

is breached, and then analyse the distribution of realized losses on those breach days.

The core idea of the test is to compare the realized tail losses with the ES forecasts under a correctly
specified model. To obtain the reference (null) distribution, they generate losses using the samplign
distrubiton of the null model. The realised Z-statistic is then compared with the simulated distribu-
tion. So the null hypothesis is that our model is correctly specified. The test is one-sided because

only underestimating Expected Shortfall is a real problem: if ES is too low, the model underestimates
tail risk and leads to insufficient capital, whereas overestimating ES is simply conservative and not

considered a failure. To conduct Acerbi and Székely test, for each method we created a sampler that

sample from the model distribution M samples for the Monte carlo simulation. By conducting Acerbi

12



and Székely test we obtained the following results :

Z1 stat Pvalue ES backtest
Ticker Method

AAPL  historical 0.017973 3.64e-01
gaussian 0.166928 0.00e+4-00
student -0.027741 5.52e-01
parametric ~ 0.003810 4.54e-01
ths -0.114048 9.74e-01

META historical 0.057958 2.63e-01
gaussian 0.241137 0.00e+4-00
student 0.043681 2.70e-01
parametric  0.104055 2.00e-02
ths 0.082961 2.40e-01

JPM historical 0.104375 1.61e-01
gaussian 0.534150 0.00e+00
student 0.299156 3.50e-02
parametric  0.343861 0.00e+00
fths 0.090146 3.01e-01

For AAPL, only the Gaussian ES model fails the Z; test, with a p-value of 0, indicating that the
Gaussian assumption systematically underestimates tail severity. All other models exhibit p-values
above 5%, indicating that their ES estimates are statistically compatible with the realized tail losses.

For META, the Gaussian model fails, with a very small p-value of 0, indicating that the Gaussian
assumption systematically underestimates tail severity. The conditional parametric model also fails
with a p-value of 2- 1072 All other models exhibit p-values above 5% showing no statistical evidence
of ES misspecification.

For JPM, the Gaussian model has p-value 0 and the parametric model 0 and the student model
3.50 - 1072 both fail the Z; test. These models underpredict the magnitude of extreme losses. The
historical and FHS models pass, indicating that their ES forecasts align with realized tail behavior.

Across the three assets, the results show that ES model performance is strongly asset dependent,
reflecting differences in tail behaviour across return distributions. A common pattern is that the Gaus-
sian model systematically fails for all assets, confirming that its thin-tailed distributional assumption
leads to persistent underestimation of extreme losses. However, the fact that different models fail for
different assets highlights that the appropriateness of an ES model depends critically on asset-specific
tail dynamics. Notably, the filtered historical simulation performs well across all cases, suggesting
that its semi-parametric structure offers robust flexibility in practice.
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4 Exercise 4

Copula fitting. On the single estimation window of length W = 252 (i.e., same as in question 2),
model cross-asset dependence across AAPL, META, and JPM using copulas.

a) For each asset i, let Uy; = %, t =1,...,W be the empirical quantiles, sometimes

known as pseudo-observations. Plot dependence between asset pairs both in the raw returns
space (i.e., via the scatter plot of (R;;, R;;)) and the pseudo-observations space (i.e., via the
scatter plot of (Ui, Uy;)). Comment on tail dependence, symmetry/asymmetry, and how
these features motivate the choice of copula.

b) Fit a Gaussian copula and a Student-t copula and explain the fitting procedure. Report the
obtained parameter estimates.

c¢) Explain how to simulate from a copula, and use it to generate synthetic data. Thereby, sample
T points from the fitted copulas, with T being the total number of observations in the dataset.
Using the inverse empirical cdf of each asset, transform the simulated uniform samples into
simulated returns. Visually compare the original and simulated returns, and describe what
you observe.

Copulas and Their Purpose

In multivariate modelling, it is often useful to separate the marginal behaviour of each variable from
the dependence structure that links them. A copula provides exactly this decomposition. By Sklar’s
theorem, any multivariate distribution F' with marginals Fi,..., F; can be written as

F(xy,...,xq) = C(Fi(z1),..., Fi(zq)),

where C'is a copula: a multivariate distribution on [0, 1] with uniform marginals.
This representation allows us to model the marginal distributions F; independently from depen-
dence structure encoded by the copula C.

In financial applications, this flexibility is valuable because returns often exhibit heavy tails and
skewness, while dependence may be nonlinear or exhibit tail co-movements. Gaussian and Student-t
copulas are widely used examples: the Gaussian copula captures linear dependence through a correla-
tion matrix, whereas the Student-t copula additionally allows for joint extreme events via its degrees
of freedom.

In this exercise, we use copulas to isolate the dependence between AAPL, META, and JPM, fit
parametric copula models to this structure, and generate simulated return series that preserve both
the empirical marginals and the estimated dependence.

4.A Pseudo-observations

We begin by extracting the first estimation window (W = 252 observations) of daily log-returns for
AAPL, META, and JPM. For each asset i and time ¢, we construct pseudo-observations using

rank(Ry ;)
Uti = ———5»
W +1
where the ranking is applied column-wise. This transformation produces approximately uniform vari-
ables on (0, 1) while preserving only the dependence structure.
Figure 8 shows the raw return pairs alongside their pseudo-observation counterparts. AAPL-

META exhibits clear positive dependence in both spaces, while pairs involving JPM show weaker
association.
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Figure 8: Raw returns (top row) and pseudo-observations (bottom row) for each asset pair.

Raw returns The AAPL-META pair exhibits a clear upward-sloping cloud, indicating a positive
dependence and frequent joint large moves. In contrast, AAPL-JPM and META-JPM show more
diffuse scatter patterns, reflecting weaker dependence between tech firms and a bank. Across all pairs,
extreme returns are more dispersed than expected under normality, suggesting heavy-tailed behavior
and occasional simultaneous large shocks.

Copula space In copula space, AAPL-META displays a marked diagonal structure, confirming
a positive dependence. The clustering of observations near the corners (0,0) and (1, 1) further reveals
tail dependence, meaning that extreme moves tend to occur together. By comparison, AAPL-JPM
and META-JPM resemble an almost uniform cloud over [0, 1]?, confirming weaker dependence and
only marginal tail co-movement.

Implications for copula choice Given the evident heavy tails and clear tail dependence in AAPL-
META, a Gaussian copula, though adequate for symmetric dependence, cannot capture the probabil-
ity mass in the joint extremes. The Student-¢ copula, however, explicitly models tail dependence and
is therefore the appropriate copula for this portfolio. Its structure aligns with the empirical behavior
of the assets, particularly the strong, tail-driven co-movements between the two tech stocks. Conse-
quently, the Student-¢ copula provides a more realistic representation of joint downside risk than its
Gaussian counterpart.

4.B Fit the copulas

We fit a Gaussian copula and a Student-¢ copula to the pseudo-observations via maximum likelihood.
Given pseudo-observations U = (Ug1,Us2,U3), the log-likelihood of a copula Cy with parameter
vector 0 is

w
00) = Z log C@(Ut,la Ui 2, Ut,3)7
t=1

where ¢y is the copula density. The fitting procedure consists of maximizing ¢(6) with respect to the
dependence parameters (the correlation matrix, and additionally v for the Student-¢ copula). Since
the marginals are already transformed into uniforms, the estimation focuses purely on the dependence
structure.
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Gaussian copula. The Gaussian copula is parametrized solely by its 3 x 3 correlation matrix. The
estimated correlation matrix and log-likelihood of ~ 69 are obtained from the fitted model. With
d = 3 assets, the Gaussian copula has 3 free parameters.

Student-t copula. The Student-t copula has the same correlation matrix as the Gaussian copula
but includes an additional degrees-of-freedom parameter v (making it a total of 4 parameters), which
controls tail dependence. In our fit, we estimated v =~ 13, indicating moderately heavy joint tails.
The Student-t copula achieves a slightly higher log-likelihood of = 70, consistent with the mild tail
clustering observed in the data.

Correlation matrix.

AAPL META JPM

AAPL ,1.0000 0.2870 0.3428
YGaussian = META <02870 1.0000 05979)
JPM \0.3428 0.5979 1.0000

AAPL META JPM

AAPL ,1.0000 0.3021 0.3494
Ygtudent-t = META (0.3021 1.0000 0.5995)
JPM \0.3494 0.5995 1.0000

4.C Simulate from the copulas

Using the fitted copulas, we generate T synthetic observations for each asset. The simulation relies
on the fundamental copula identity

F(xi,...,xq) = Co(Fi(x1), ..., Fy(zq)),

which implies that any joint sample can be obtained by first simulating the dependence (through the
copula) and then restoring the marginal distributions through inverse CDFs.

Step 1: simulate uniforms. Foreacht=1,...,T, we draw a vector of uniforms
¢ t ¢
U(t) = (Ul( )7 U2( )a U?E )) ~ Cy,

where Cjy is the fitted Gaussian or Student-¢ copula. These uniforms encode *only the dependence

structure®: individually, Ui(t) ~ U(0,1), but jointly they reproduce the correlations or tail dependence
implied by the fitted copula.

Step 2: inverse empirical CDFs. For each asset i, we construct its empirical inverse CDF l?’i_l
from the observed returns by sorting the data and performing monotone interpolation. Each simulated
uniform is then transformed as " "
t St
xO-F (U. ) .

K3 2

This step ensures that the simulated values Xi(t) follow the same marginal distribution as the
historical returns of asset i, regardless of the copula chosen. In particular, this approach reproduces
skewness, kurtosis, and heavy tails present in the empirical data without assuming any parametric

marginals.
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Step 3: comparison. Figure 9 compares the simulated and original marginal distributions. Both
copulas reproduce the empirical marginals very closely.

= Original [ Gaussian copula [ Student-t copula

AAPL — Original vs Gaussian META — Original vs Gaussian JPM — Original vs Gaussian
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Figure 9: Comparison of original vs. copula-simulated marginal distributions (Gaussian and Student-
t).
Figure 10 compares the pairwise dependence in the original and simulated datasets. The Gaussian

copula captures the overall dependence well, while the Student-¢ copula produces slightly stronger
joint extremes, though the effect is moderate due to the fitted degrees of freedom relatively moderate.
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Figure 10: Dependence structure of original returns vs. Gaussian and Student-t copula simulations.

Figure 11 compares the evolution of the original return series with those generated by the Gaussian
and Student-t copulas. Both copulas reproduce the short-term fluctuations around zero observed
in the empirical returns. The Gaussian copula yields smoother trajectories with fewer pronounced
peaks, reflecting its tendency to underestimate tail events. In contrast, the Student-t copula produces
occasional large spikes and clusters of heightened volatility, more closely resembling the empirical
behavior of financial returns and capturing heavy-tailed dynamics. This difference is particularly
visible for META, where the Student-t simulations exhibit sequences of large movements indicative of
volatility clustering.
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Figure 11: Time-series comparison of simulated returns vs. original returns

Overall, both copulas generate realistic synthetic returns that successfully replicate the empirical
marginal distributions and preserve the dependence structure estimated in the first window. However,
the Student-t copula offers a more faithful reproduction of extreme events and volatility clustering,
making it better suited for scenarios involving risk analysis or stress testing, where accurate modeling
of tail behavior is crucial.

5 Exercise 5

Backtesting portfolio VaR and ES. Construct an equal-weighted portfolio of AAPL, META,
and JPM. Use the same univariate methods as in question 2 and include also the copula-based ap-
proach from question 4. Estimate 1-day ahead VaR/ES at a = 95% and o = 99%, then backtest and
compare them using rolling-window forecasts as in question 3. Compare portfolio VaR/ES back-
tests across univariate and copula-based approaches. Assess whether explicit dependence modeling
improves accuracy, especially in the tails. Discuss potential reasons.

a) Univariate models: use the same backtesting procedure as in question 3, but now on the
portfolio returns.

b) Copulas: at each time ¢, fit the copulas as in 4.b) on the last W days of portfolio component
returns. Simulate N = 1000 returns from each fitted copula, then estimate VaR/ES from the
simulated portfolio returns.

c) Backtesting and comparison: present a compact comparison of backtests. Does dependence
modeling improve results? Why /why not?

5.A Univariate models
We construct an equal-weighted portfolio of the three assets,

1 1
Rfort RAAPL + 7R113\/[ETA + 7R;€]PM

and compute its daily log-returns over the full sample. The resulting series has mean 0.00165 and
standard deviation 0.0142, with extremes ranging from —8.8% to +11.9%.
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We evaluate several univariate risk models on the portfolio loss series LP*"" = —RP°™, using the
same rolling-window setup as in Exercise 3 (W = 252 days). For each method and each confidence
level 1 — a € {0.95,0.99}, we compute one-step-ahead forecasts of VaR,, and ES,:

We evaluate five univariate risk models: Historical Simulation (HS), a Gaussian parametric model,
a Student-¢ parametric model, a conditional parametric model (GARCH with Gaussian innovations),
and Filtered Historical Simulation (FHS).

The resulting VaR and ES sequences are backtested using the Kupiec Proportion-of-Failures (POF)
test, the Christoffersen independence test (serial independence of violations) which we use to imple-
ment the Conditional Coverage tests. Finally, we use the Z1 ES backtest based on simulated p-values.

95% 99%
Method VaR POF VaR CC ESZ1 | VaR POF VaR CC ESZ1
Historical v v X X X v
Gaussian v v X X X X
Student-t v v v X X v
Parametric (GARCH) v v X v v v
FHS v v v v v v

Table 4: Combined backtesting results for portfolio VaR and ES (univariate models). A checkmark
denotes failure to reject the null hypothesis at the 5% significance level.

Confidence Level Method POF p-value CC p-value ES Z1 stat ES p-value

historical 0.1436 0.2264 0.1641 0.0190
gaussian 0.1436 0.2264 0.3136 0.0000
95% student 0.0587 0.1326 0.1785 0.0630
parametric 0.3061 0.3064 0.1465 0.0020
fths 0.5673 0.6757 0.0598 0.2170
historical 0.0067 0.0141 0.0576 0.2300
gaussian 0.0002 0.0006 0.2675 0.0050
99% student 0.0021 0.0056 -0.0189 0.3870
parametric 0.0523 0.1280 0.1151 0.0760
fths 0.1263 0.2722 -0.0336 0.8100

Table 5: Backtesting results for univariate portfolio models. POF = Kupiec proportion of failures
test; CC = Christoffersen conditional coverage test; ES = Expected Shortfall Z1 backtest.

At the 95% confidence level, all models successfully pass the VaR backtests. However, at the
more stringent 99% level, the pure historical and simple parametric specifications (Gaussian and
Student-t) fail both Kupiec and Christoffersen tests, confirming their inability to accurately capture
tail risk. In contrast, dynamic and volatility sensitive approaches, namely the conditional GARCH
model and Filtered Historical Simulation (FHS), display markedly superior performance, passing both
VaR diagnostics across confidence levels.

Expected Shortfall forecasts, evaluated using the Acerbi-Szekely Z1 backtest, exhibit a similar
pattern. While Gaussian-based ES forecasts systematically fail, heavy-tailed or conditional models
(Student-t, GARCH, and especially FHS) generally produce statistically consistent ES estimates,
indicating a more reliable characterization of downside risk.

The backtesting results demonstrate that static or distributionally simplistic models are inadequate
for high-confidence risk estimation on this portfolio. Models that account for time-varying volatility
or tail dependence, in particular GARCH and FHS, provide materially more robust risk forecasts,
validating their use in environments where accurate extreme-loss modeling is essential.
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5.B Copulas

We next estimate portfolio VaR and ES using multivariate dependence models. At each time t > W
(with W = 252), we fit a Gaussian and a Student-t copula to the pseudo-observations of AAPL,
META, and JPM over the most recent window. The fitted copulas capture the cross-asset dependence
structure for that period.

Intuition. The copula approach generates many plausible future market scenarios by combining the
dependence structure between assets with their empirical marginal distributions. The fitted copula
produces correlated uniform random variables that encode how the three assets tend to co-move,
including the possibility of joint extremes (in the Student-t case). Each uniform component is then
mapped through the empirical inverse CDF of the corresponding asset, ensuring that the simulated
returns follow the same marginal behavior as in the historical window. This yields realistic joint return
scenarios from which portfolio losses can be computed.

Simulation and risk estimation. For each copula, we simulate Ny, = 1000 joint scenarios
U(m) ~ Cy, m=1,..., Nsim,

and transform the components via
x™ = E-Yu™).

This produces simulated returns with the correct marginals and copula-based dependence. Portfolio

returns are then computed using the equal-weight vector w = (%, %, %), and simulated losses

L) — T x(m)

yield Monte Carlo estimates of VaR and ES at confidence levels 1 — a € {0.95,0.99}.
Results are discussed in the next subsection 5.C.

5.C Backtesting and Comparison

We now compare the out-of-sample performance of all portfolio risk models: both univariate and
copula-based using the VaR and ES forecasts obtained in the previous subsections. The evaluation
covers the final 370 days of the sample, corresponding to the rolling-window setup with W = 252.
The main results are shown in Figure 12.

VaR at 95% VaR at 99% ES
Method POF CC | POF CC | 95% 99%

Gaussian Copula v v X X X v
Student-t Copula v v v v v v

Table 6: Backtesting results for copula-based portfolio models. A checkmark denotes failure to reject
the null hypothesis at 5%.
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Confidence Approach Method Violations Total Violation Rate Expected Rate POF Stat POF p-value Christoffersen Stat Christoffersen p-value 21Stat Z1p-value
95%  Univariate historical 25} 371 0.0674 0.0500 21391 0.1436 2.9707 0.2264 0.1641 0.0130
95%  Univariate gaussian 371 0.0674 0.0500 21391 0.1436 2.9707 0.2264  0.3136 0.0000
95%  Univariate student 371 0.0728 0.0500 3.5740 0.0587 4.041 0.1326 0.1785 0.0600
95%  Univariate parametric 371 0.0620 0.0500 1.0475 0.3061 2.3654 0.3064 0.1513 0.0010
95%  Univariate fhs 371 0.0512 0.0500 0.0114 0.9150 0.8387 0.6575 0.1120 0.0650
95% Copula  Gaussian Copula 370 0.0703 0.0500 2.8581 0.0909 3.4867 0.1749 0.1561 0.0310
95% Copula  Student-t Copula 370 0.0676 0.0500 21762 0.1402 3.0007 0.2230 0.1597 0.0530
99%  Univariate historical 371 0.0270 0.0100 7.3594 0.0067 8.5207 0.0141  0.0576 0.2040
99%  Univariate [CENESED] 371 0.0350 0.0100 14.2588 0.0002 14.7410 0.0006 0.2675 0.0040
99% Univariate student 371 0.0296 0.0100 9.4767 0.0021 10.3690 0.0056 -0.0189 0.4360
99%  Univariate parametric 371 0.0216 0.0100 3.7649 0.0523 4.1108 0.1280 0.1215 0.0590
99%  Univariate fhs 371 0.0162 0.0100 1.2030 0.2727 1.3976 0.4972 0.0714 0.3270
99% Copula  Gaussian Copula 370 0.0243 0.0100 5.4771 0.0193 6.9544 0.0309 0.1684 0.0740
99% Copula  Student-t Copula 370 0.0216 0.0100 3.7884 0.0516 5.6469 0.0594  0.0556 0.3080
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Figure 12: Summary table of VaR and ES backtesting statistics for all univariate and copula-based
models at the 95% and 99% confidence levels.
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Figure 13: Violation rates for univariate and copula-based VaR forecasts at 95% and 99% confidence.

Interpretation of Copula-Based Backtesting Results. At the 95% confidence level, the Fig-
ure 13 shows that both Gaussian and Student-¢ copulas exhibit violation rates that exceed the theo-
retical benchmark, performing similarly to or slightly worse than several univariate methods. At the
99% level, copula models show a modest improvement relative to some univariate approaches; how-
ever, their violation rates remain above the expected threshold, indicating persistent underestimation
of tail risk. In contrast, univariate models that account for time-varying volatility, in particular the
Filtered Historical Simulation (FHS) and parametric GARCH, achieve violation rates closest to the
theoretical expectations across both confidence levels. This suggests that, for our particular portfolio
and the period under study, modeling temporal dependence and volatility clustering is more impactful
for accurate risk measurement than modeling cross-sectional dependence alone.
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Figure 15: Time series of portfolio VaR forecasts (Part 2).

Figures 14 and 15 present the rolling VaR estimates alongside realized portfolio losses for all
considered models. A visual inspection reveals that copula-based approaches do not systematically
outperform univariate models such as FHS or GARCH-type specifications. Although copulas provide
a more flexible framework to model cross-sectional dependence, their VaR curves often remain too
smooth and fail to adjust rapidly during periods of heightened volatility. As a result, copula-based VaR
estimates are frequently exceeded during market stress, leading to a substantial number of violations.

In contrast, univariate methods that explicitly incorporate time-varying volatility, particularly
FHS, tend to align more closely with the observed loss dynamics. These models react more promptly
to volatility bursts and adjust their risk estimates accordingly, which explains their lower violation
frequencies. This behavior is especially visible during the sharp increase in losses towards the end of the
sample: while FHS-based VaR rapidly escalates to reflect the changing risk environment, copula-based
VaR remains comparatively muted and is repeatedly breached.
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Figure 16: Time series of portfolio ES forecasts (Part
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Figure 17: Time series of portfolio ES forecasts (Part 2).

Figures 16 and 17 display the rolling Expected Shortfall (ES) forecasts together with realized
portfolio losses for all risk models. Similar to the VaR analysis, the copula-based approaches do
not demonstrate a clear performance advantage over univariate methods. Although ES is a coherent
risk measure and theoretically more sensitive to tail events, the copula-based ES estimates remain
relatively stable throughout the sample and fail to escalate during periods of heightened market
stress. Consequently, several realized losses exceed the copula-based ES thresholds, indicating that
these models tend to underestimate tail risk.

By contrast, univariate models that incorporate time-varying volatility, particularly the Filtered
Historical Simulation (FHS) and, to a lesser extent, parametric GARCH-type, provide more reactive
ES estimates. These methods adjust rapidly to volatility bursts, producing higher ES values when
market conditions deteriorate. This dynamic behavior results in fewer ES breaches, especially in the
latter part of the sample, where the portfolio experiences the most extreme losses. The responsiveness
of FHS to evolving volatility patterns highlights the importance of modeling temporal dependence and
volatility clustering when forecasting downside risk.
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Conclusion. The objective of this analysis was to assess whether dependence modeling improves
portfolio risk estimation. While copula-based approaches explicitly capture the cross-sectional de-
pendence structure between assets, the empirical results do not provide clear evidence of superior
performance compared to univariate models.

An explanation for these findings lies in the characteristics of the underlying portfolio. The three
assets considered do not exhibit pronounced dependence, which limits the potential gains from employ-
ing copula-based models. In such a context, explicitly modeling cross-sectional dependence offers little
improvement. Moreover, copulas do not account for volatility clustering or sudden volatility bursts if
we give them simple Gaussian or Student-¢ marginals, unlike FHS and GARCH. Since extreme losses
during the sample period appear to be primarily driven by volatility dynamics rather than dependence
structures, correctly modeling time-varying volatility proves more important than capturing marginal
dependence. Consequently, the relative underperformance of copula-based methods is consistent with
the underlying data-generating process and the nature of the portfolio risk.

Therefore, we cannot conclude that dependence modeling via copulas systematically improves the
results. Copula-based methods do not outperform well-specified univariate models such as FHS, and
their benefits become visible only at extreme confidence levels without consistently translating into
better backtesting outcomes. While copulas generally perform better than some simpler univariate
approaches, this incremental improvement remains insufficient to claim superiority over methods that
explicitly model volatility dynamics. As a result, the evidence does not support the claim that copulas
provide superior VaR or ES estimates in this setting.

A Code Appendix

# X% [markdown]
# # Project 1: Market Risk - VaR, ES, and Copulas

# 4% [markdown]

# **Names of all group members:**

# - William Jallot (william.jallot@epfl.ch)
# - Matthias Wyss (matthias.wyss@epfl.ch)

# - Antoine Garin (antoine.garin@epfl.ch)

#

# ——

# 4% [markdown]

# ## 0 - Setup

#

# Creates mecessary folders and sets hyperparameters for the project.

# 5%
# If a package import fails, install it in your environment, e.g.:
# Jpip install yfinance arch copulae statsmodels seaborn

import os

import numpy as np

import copulae

import pandas as pd

import scipy.stats as stats

from pathlib import Path

from itertools import combinations

from statsmodels.graphics.tsaplots import plot_acf, plot_ccf, plot_pact
from IPython.display import clear_output
from scipy.stats import chi2

from statsmodels.tsa.ar_model import AutoReg
from arch import arch_model

from scipy.stats import norm

import matplotlib.patches as mpatches
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from matplotlib.patches import Patch
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings(’ignore’)

# your own script with helper functions, <f any
# import utils as U

# Locate the Project 1 directory to this notebook’s working directory
PROJECT_DIR = Path.cwd()
DATA_DIR = PROJECT_DIR / ’data’
OUT_DIR = PROJECT_DIR / ’output’
for d in [DATA_DIR, OUT_DIR]:
d.mkdir(parents=True, exist_ok=True)

# Parameters

TICKERS = [’AAPL’, °META’, ’>JPM’]
START = ’2023-01-01’

END = ’2025-06-30’

WINDOW = 252

CONFIDENCE = [0.95, 0.99]
np.random.seed (0)

print (’Project_ dir:’, PROJECT_DIR)
print (’Output,—->’, OUT_DIR)

# J% [markdown]
# Download and save Adjusted Close for the tickers over the given range into ‘data/‘ (CSV
per ticker).

# 0%

import yfinance as yf

print (’Downloading data to’, DATA_DIR)
for t in TICKERS:
print (£’ —>,{t}?)
df = yf.download(t, start=START, end=END, progress=False, auto_adjust=False)
if df.empty:
print (£’ uuuWarning: no data for {t}’)
continue
out = df.reset_index()
out = out[[’Date’, ’Adj.Close’]]
out.to_csv(DATA_DIR / f’{t}.csv’, index=False)
print (’Done.’)

# % [markdown]
# Now, load the data back from CSVs

# Ik
files = [f for f in os.listdir(DATA_DIR) if f.lower().endswith(’.csv’)]
frames = []
for £ in files:
p = os.path.join(DATA_DIR, f£)
df = pd.read_csv(p, parse_dates=[’Date’])
df = df[[’Date’, ’Adj._Close’]]
# Coerce to numeric and drop malformed rows
df [’Adj_Close’] = pd.to_numeric(df[’Adj_Close’], errors=’coerce’)
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df = df.dropna(subset=[’Date’, ’Adj Close’])
df = df.rename(columns={’Adj Close’: f.split(’.’)[0]})
df = df.set_index(’Date’).sort_index()
frames.append (df)

prices = pd.concat(frames, axis=1).dropna(how=’all’)

print(prices.head(15))

# 4% [markdown]
# ## 1 - Empirical stylized facts

# J% [markdown]

# - a. Construct log-returns for AAPL, MSFT, JPM; plot series and comment on trends/
volatility.

# - b. Estimate correlation functions of returns and absolute returns across assets and
lags 025; comment.

# - c. QO plots vs Normal; perform JarqueBera test and discuss normality.

# 4% [markdown]
# ### a. Log-returns and plots

# 5%
log_returns = np.log(prices).diff () .dropna()

# Non-overlapping weekly returns: resample to weekly (Friday close) then compute log returns
# weekly_prices = prices.resample(’W-FRI’).last()
# weekly_log_returns = np.log(weekly_prices / weekly_prices.shift(1)).dropna()

fig, axs = plt.subplots(len(TICKERS), 1, figsize=(10, 3 * len(TICKERS)))
for i, ticker in enumerate(TICKERS):
log_returns[ticker].plot(ax=axs[i], title=f"Log returns - {ticker}")
axs[i] .set_ylabel("Log return")
plt.tight_layout()
plt.savefig(os.path.join(OUT_DIR, f"log_returns_all.png"))
plt.show()

# 4% [markdown]

# Log-returns show no persistent trend (mean around zero).

# Volatility clusters show us that META has the highest wvolatility, AAPL is moderate, and
JPM is the lowest.

# X% [markdown]
# ### b. Cross—correlation and autocorrelation functions

# 5%
lags = 25

# ACF align per asset only

fig_acf, axs_acf = plt.subplots(2, len(TICKERS), figsize=(5*1en(TICKERS), 8), sharex=True,
sharey=True)

for j, asset in enumerate(TICKERS):
s = log_returns[asset].dropna()

plot_acf(s, lags=lags, ax=axs_acf[0, jl)
axs_acf[0, j].set_title(f"{asset}")
axs_acf[0, j].axhline(0, lw=1, color="k", alpha=0.7)

plot_acf(s.abs(), lags=lags, ax=axs_acf[1l, jl)

axs_acf[1, jl.set_title(f"|{asset}|")
axs_acf[1l, j].axhline(0, lw=1, color="k", alpha=0.7)
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for ax in axs_acf.flat:
ax.set_xlabel("Lag h")
ax.set_ylabel("Correlation")
ax.set_ylim(-0.5, 1.1)

fig_acf.suptitle("Autocorrelationy(returns and absolute returns)", y=1.02)
fig_acf.tight_layout ()
fig_acf.savefig(os.path.join(OUT_DIR, "acf_returns_abs_returns.png"))

# CCF - align per pair

pairs = list(combinations(TICKERS, 2)) # We use combinations to avotid duplicate pairs (4,B)
and (B,A) for cross-correlation

fig_ccf, axs_ccf = plt.subplots(2, len(pairs), figsize=(5*len(pairs), 8), sharex=True,
sharey=True)

for j, (n, m) in enumerate(pairs):
# raw returns for direction Corr(n_t, m_{t-h})
xy = log_returns[[n, m]].dropna()
X, v = xy[nl, xyl[m]

plot_ccf(x, y, lags=lags, ax=axs_ccf[0, j])
axs_ccf [0, j]l.set_title(f"{n} vs,{m}")
axs_ccf[0, j].axhline(0, lw=1, color="k", alpha=0.7)

# absolute returns: take abs on raw series

xa, ya = x.abs(), y.abs()

plot_ccf(xa, ya, lags=lags, ax=axs_ccf[l, jl)
axs_ccf[1, jl.set_title(£"|{n}| vsyl{m}I")
axs_ccf[1, jl.axhline(0, lw=1, color="k", alpha=0.7)

for ax in axs_ccf.flat:
#ax.set_zlim(0, lags)
ax.set_xlabel("Lag h")
ax.set_ylabel("Correlation")
ax.set_ylim(-0.5, 1.1)

fig_ccf.suptitle("Cross-correlation, (returns and, absolute_ returns)", y=1.02)
fig_ccf.tight_layout ()
fig_ccf.savefig(os.path.join(OUT_DIR, "ccf_returns_abs_returns.png"))

plt.show()

# X% [markdown]

# The autocorrelation of log returns for AAPL, META, and JPM shows almost no correlation
after lag 0. This indicates that past returns have little predictive power for future
returns, confirming the weak linear dependence typical of stock prices.

#

# Absolute returns exhibit stronger but still week autocorrelations, with lag 1 correlations

around 0.2 for AAPL.

#

# Cross-correlations between different stocks log returns are moderate at lag 0 (roughly
0.27-0.41) and decay quickly for higher lags. This suggests some contemporaneous co-
movement across assets, particularly between AAPL and META, but limited predictive
influence across weeks.

#

# Cross-correlations of absolute returns are weaker than the autocorrelations of absolute
returns, typically ranging from 0.05 to 0.15 at lag 0. However, they remain positive for

most lags, tndicating modest wvolatility spillover across assets.
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# 4% [markdown]
# ### c. QO plots and nmormality tests

# 0%
n_assets = len(log_returns.columns)
jarque_bera_results = {}

fig, axes = plt.subplots(n_assets, 1, figsize=(8, 3*n_assets))

for i, ticker in enumerate(log_returns.columns):
stats.probplot(log_returns[ticker], dist="norm", plot=axes[i])
axes[i] .set_title(f"Normal QQ-Plot: {ticker}")

jarque_bera_results[ticker] = stats.jarque_bera(log_returns[ticker])

fig.tight_layout ()
fig.savefig(os.path.join(OUT_DIR, '"qq_plots.png"))
fig.show()

# 4% [markdown]

# We can see that across the three assets, the resolut of the G plot exhibit the same ’
shape’. At the two extremes of the 45 degree line, the theoritical quantiles are below
on the left and above on the right. Thtis means our log returns are left skewed (long
negative tatil) and are fat tailed.

# %% [markdown]

# The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching
a normal distribution. It tests, tf we can rTeject the null hypothesis that our returns
are normally distributed. If we want to test at 5/ level of significance, in case our
$p_\text{value}$, the lowest significance at which you can reject, if it is lower than
57 we would reject mnormality.

#

#

# I
for ticker, result in jarque_bera_results.items():
jb_stat, jb_pvalue = result[0], result[1]
print (f"Jarque-Bera test_ for {ticker}:")
print (£f",,JB Statistic: {jb_stat:.4f}")
print (f" p-value: {jb_pvalue:.4f}")
if jb_pvalue < 0.05:
print (" _=>_Rejectthe null hypothesis of normality, at_the 5/ significance level.\n"

)
else:
print (", =>_Fail to reject, the null, hypothesis of normality at, the 5% significance
level.\n")

# 1% [markdown]
# ## 2 - First-window modeling: VaR, ES, and distributions

# 4% [markdown]
Use the first estimation window $W=252$ days on each asset separately with losses $L_t$ =
$R_t$.

Compare:

*

- Historical,

Gaussian,

Student-t,

AR(p)+GARCH(1,1) with Normal/Student-t,
Filtered Historical Simulation (FHS).

HOWHOR R R W
|
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# 4% [markdown]

# We use the first estimation window of length W = 252 days ("1 trading year) for each asset
separately.

# Losses are defined as $L_t = -R_t$, so the right tail corresponds to risk.

#

# ### a. Historical Simulation (Empirical CDF)

#

# The **empirical cumulative distribution function (CDF)#** of losses %s:

#

# 88

# \hat{F}_L(z) = \frac{1}HW} \sum_{t=1}"W \mathbf{1}_{\{L_t \le z\}}

# 88

#

# - #xValue-at-Risk (VaR)** at confidence level $\alpha$:

#

# 88

# \text{VaR}_\alpha = \inf \{ = : \hat{F}_L(z) \ge \alpha \}

# 38

#

# — *+Egpected Shortfall (ES)*x*:

#

# 88

# \text{ES}_\alpha = \mathbb{E}[L_t \mid L_t \ge \text{VaR}_\alphal] \approz \tezt{mean of
losses VaR}_\alpha

# 88

#

# xxNotes:*x

# - Non-parametric approach: no assumption on the loss distribution.

# - Directly based on historical data.

#

# _

# %

def historical_simulation(L, confidence_levels)
VaR_hist = {a: np.quantile(L, a) for a in confidence_levels}
ES_hist = {a: L[L >= VaR_hist[a]].mean() for a in confidence_levels}

out = {
"VaR": {},
"ES": {}

}

for a in confidence_levels:
out["VaR"] [a] = VaR_hist[a]
out ["ES"] [a] = ES_hist[a]
return out

# We will need this later for Monte Carlo simulations
def historical_sampler(L, M)
return np.random.choice(L, replace=True, size=M)

# 4% [markdown]

# #4## b. Gaussian (Normal) Distribution
#

# Assume losses are **normally distributed**:
#

# 8%

# L_t \sim \mathcal{N}(\mu, \sigma~2)

# 88

#

# where:

#
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# 88

# \mu = \text{mean}(L), \quad \sigma = \text{std}(L)

# 88

#

# — *+Value-at-Risk (VaR)**:

#

# 88

# \text{VaR}_\alpha = \mu + \sigma \cdot z_\alpha

# 88

#

# where $z_\alpha = \Pht {-1}(\alpha)$ is the $\alpha$-quantile of the standard normal
distribution.

#

# - #*xEgzpected Shortfall (ES)**:

#

# 88

# \text{ES}_\alpha = \mu + \sigma \frac{\phi(z_\alpha)}{1-\alphat

# 88

#

# with $\phi(2z) = \frac{i}{\sqrt{2\pi}} e {-z"2/2}$%, the standard normal density.

#

# xxNotes:*x

# - Closed-form formulas make Gaussian VaR/ES fast to compute.

# - Limitation: does not capture fat tails in the loss distribution.

#

# _

#

# Ik

def gaussian_normal_distribution(L, confidence_levels)
mu, sigma = norm.fit(L)
VaR_gauss = {a: mu + sigma * norm.ppf(a) for a in confidence_levels}
ES_gauss = {a: mu + sigma * norm.pdf (norm.ppf(a)) / (1 - a) for a in confidence_levels}

out = {
"mu": mu,
"sigma": sigma,
"VaR": {},
IIESII : {}

}

for a in confidence_levels:
out["VaR"] [a] = VaR_gauss[al
out ["ES"] [a] = ES_gauss[a]
return out

# We will need this later for Monte Carlo simulations
def gaussian_sampler(L, M)

mu, sigma = norm.fit(L)
return np.random.normal (loc=mu, scale=sigma, size=M)

# %% [markdouwn]

# ### c. Student-t Distribution
#

# Assume losses follow a **Student-t distribution**:
#

# 8%

# L_t \sim t_\nu(\mu, \sigma)

# 88

#

# where:

#

- $\nu$ = degrees of freedom (controls tatil thickness)
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# - $\mu$ = location parameter

# - $\sigma$ = scale parameter

#

# — **Value-at-Risk (VaR)** at confidence level $\alpha$:

#

# 88

# \text{VaR}_\alpha = \mu + \sigma \cdot t_\nu~{-1}(\alpha)
# 88

#

#

where $t_\nu~{-1}(\alpha)$ is the $\alpha-quantile of the standard Student-t with $\nud
degrees of freedom.

- *+Expected Shortfall (ES)** for $\nu > 1§:

88
\text{ES}_\alpha = \mu + \sigma \frac{\nu + \big(t_\nu~{-1}(\alpha)\big) "2}{\nu-1} \cdot \
frac{f_\nu(t_\nu~{-1}(\alpha))}{1-\alphat

B OWHOR R R

# 88

#

# where $f_\nu(\cdot)$ <s the standard Student-t density.

#

# **Impact of $\nuf:**

# - Small $\nu$  fatter tails higher VaR and ES (more conservative estimates)
# - Large $\nu$  approaches normal distribution VaR/ES similar to Gaussian
#

# *xNotes:**

# - Student-t captures extreme losses better than Gaussian due to fat tails.
# - VaR and ES depend strongly on the estimated degrees of freedom $\nu$.

#

# 5%

from scipy.stats import t

def student_var_es(L, confidence_levels)
nu, mu_t, sigma_t = t.fit(L)
VaR_t = {a: mu_t + sigma_t * t.ppf(a, nu) for a in confidence_levels}
ES_t = {a: mu_t + sigma_t * (nu + (t.ppf(a, nu))**2)/(nu - 1) * t.pdf(t.ppf(a, nu), nu)
/(1 - a) for a in confidence_levels}

out = {
"VaR": {},
IIES" : {}

}

for a in confidence_levels:
out[’nu’] = nu
out[’mu_t’] = mu_t
out[’sigma_t’] = sigma_t
out ["VaR"] [a] = VaR_t[a]
out ["ES"] [a] = ES_t[a]
return out

# We will need this later for Monte Carlo simulations
def student_sampler(L, M)

nu, mu_t, sigma_t = t.fit(L)

return t.rvs(df=nu, loc=mu_t, scale=sigma_t, size=M)

# 4% [markdown]
# ### d. Conditional parametric

# nl
n_assets = 1len(TICKERS)
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fig, axes = plt.subplots(n_assets, 1, figsize=(8, 4 * n_assets))
for i, asset in enumerate(TICKERS):
plot_pacf (
log_returns[asset],
lags=lags,
ax=axes[i],
title=f’PACF {asset}’
)
axes[i] .set_ylim(-0.5, 1.1)

plt.tight_layout()
plt.savefig(os.path.join(OUT_DIR, "pacf_plots.png"))

# 4% [markdown]
# After lag 0, most values fluctuate around zero and are within the blue confidence band so
we should use an AR(0) model, a pure moise model.

# nk

def conditional_parametric_var_es(L, confidence_levels)
res_mean = AutoReg(L, lags=0).fit()
eps = res_mean.resid

garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, g=1)
res_vol = garch.fit(show_warning=False, disp=’off’)
vol_forecast = res_vol.forecast(horizon=1)

sigma_forecast = np.sqrt(vol_forecast.variance.values[-1, 0])
mean_forecast = res_mean.predict(start=len(L), end=len(L))

VaR_parametric = {a: mean_forecast.values[0] + sigma_forecast * norm.ppf(a) for a in
confidence_levels}

ES_parametric = {a: mean_forecast.values[0] + sigma_forecast * norm.pdf (norm.ppf(a)) /
(1 - a) for a in confidence_levels}

out = {
IlVaRll . {},
"Eg . {},

"mu_forecast": mean_forecast,
"sigma_forecast": sigma_forecast

for a in confidence_levels:
out["VaR"] [a] = VaR_parametric[a]
out["ES"] [a] = ES_parametricl[al

return out

# We will need this later for Monte Carlo simulations
def conditional_parametric_sampler(L, M)

res_mean = AutoReg(L, lags=0).fit()
eps = res_mean.resid

garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, g=1)
res_vol = garch.fit(show_warning=False, disp=’off’)

vol_forecast = res_vol.forecast (horizon=1)

sigma_forecast = np.sqrt(vol_forecast.variance.values[-1, 0])
mean_forecast = res_mean.predict(start=len(L), end=len(L))

return np.random.normal (loc=mean_forecast, scale=sigma_forecast, size=M)
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# 4% [markdown]
# ### e. Filtered Historical Simulation

# I
def filtered_historical_simulation(L, alpha_levels, M=1000, random_state=0):

uuuuFiltered Historical,Simulation,(FHS) jon, ,L0OSS series L.

uuuuParameters

uuuuLy tparray-likejor pd.Series

uuuuuuuuLosses (positive on bad days, small/possibly, negative on good days) .
uuuualpha_levels  :list0f float
uuuuuuuuConfidence levels, e.g.,[0.95,.,0.99].

voooMyiuint

uuuuuuuuNumber ,0of Monte Carlo simulations.

nmnn
[ [

L = pd.Series(L) .dropna()

# AR(0)
ar = AutoReg(L, lags=0).fit()
eps = ar.resid # residuals of losses

# GARCH(1,1) on residuals
garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, g=1)
garch_res = garch.fit(show_warning=False, disp=’off’)

# Conditional volatility and 1-step-ahead forecast
z_t = garch_res.std_resid

h_tl = garch_res.forecast(horizon=1) .variance.iloc[-1, 0]
sigma_tl = float(np.sqrt(h_t1))

# One-step—ahead conditional mean of losses
mu_tl = ar.forecast(steps=1).values[0]

z_star = np.random.choice(z_t, size=M, replace=True)
eps_tl_star = sigma_tl * z_star

# Simulated next-period losses
L_simulated = mu_tl + eps_tl_star

# VaR and ES

out = {
"mu_forecast": mu_t1,
"h_forecast": float(h_t1),
"r_sims": L_simulated,
"VaR": {},
IIESII : {}

for a in alpha_levels:
# a 1s the confidence level
var_a = np.quantile(L_simulated, a)
tail = L_simulated[L_simulated >= var_a]
es_a = float(tail.mean())

out["VaR"] [a] = float(var_a)
out["ES"] [a] = es_a
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return out

# We will need this later for Monte Carlo simulations
def fhs_sampler(L, M):

# AR(0) on LOSSES

ar = AutoReg(L, lags=0).fit()

eps = ar.resid

# GARCH(1,1) on residuals
garch = arch_model(eps, mean=’Zero’, vol=’GARCH’, p=1, g=1)
garch_fitted = garch.fit(show_warning=False, disp=’off’)

sigma_t = garch_fitted.conditional_volatility
h_t1 = garch_fitted.forecast(horizon=1).variance.values[-1, 0] # wvariance
sigma_t1 = np.sqrt(h_t1)

# 1-step ahead mean
mu_tl = ar.forecast(steps=1) # shape (1,)

# Standardized residuals
z_t = eps / sigma_t

# Resampling
e_star = np.random.choice(z_t, size=M, replace=True)
z_tl_star = e_star * sigma_t1

# Simulated next period
r_simulated = mu_tl.ravel() + z_tl_star

return r_simulated

# I
# Plot PDFs for all tickers in one figure
fig, axes = plt.subplots(len(TICKERS), 1, figsize=(8, 5*1len(TICKERS)), sharex=True)

# Dictionaries to store results
VaR_results = []
ES_results = []

for i, ticker in enumerate(TICKERS):
ax = axes[i] # Select subplot
ax.set_x1im(-0.1, 0.1)

# First W observations
L = -log_returns([ticker].iloc[:WINDOW]

# === Historical ===
out_hist = historical_simulation(L, CONFIDENCE)
sns.kdeplot(L, label=’Historical’, bw_method=0.3, ax=ax)

=== Gaussian ===
out_gauss = gaussian_normal_distribution(L, CONFIDENCE)
x = np.linspace(L.min(), L.max(), 200)
ax.plot(x, norm.pdf(x, out_gauss[’mu’], out_gauss[’sigma’]), label=’Gaussian’)

# === Student-t ===

out_t = student_var_es(L, CONFIDENCE)

ax.plot(x, t.pdf ((x - out_t[’mu_t’])/out_t[’sigma_t’], out_t[’nu’])/out_t[’sigma_t’],
label=’Student-t’)
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# === Conditional parametric ===

out_parametric = conditional_parametric_var_es(L, CONFIDENCE)

ax.plot(x, norm.pdf(x, out_parametric[’mu_forecast’], out_parametric[’sigma_forecast’]),
label=’Conditional, Parametric’)

=== Filtered Historical Simulation (FHS) ===
out_fhs = filtered_historical_simulation(L, CONFIDENCE)
sns.kdeplot(out_fhs[’r_sims’], label=’FHS’, bw_method=0.3, ax=ax)

=== Store results ===
for a in CONFIDENCE:

VaR_results.append ({
’Ticker’: ticker,
’Alpha’: a,
’Historical’: out_hist[’VaR’][a],
’Gaussian’: out_gauss[’VaR’] [a],
’Student-t’: out_t[’VaR’][a],
’Parametric’ : out_parametric[’VaR’][a],
’FHS’: out_fhs[’VaR’] [a]

1))

ES_results.append ({
’Ticker’: ticker,
’Alpha’: a,
’Historical’: out_hist[’ES’][a],
’Gaussian’: out_gauss[’ES’][a],
’Student-t’: out_t[’ES’][a],
’Parametric’ : out_parametric[’ES’][a],
’FHS’: out_fhs[’ES’] [a]

b

ax.set_title(f"Estimated, PDFs jof {ticker} Losses")
ax.set_ylabel("Density")
ax.legend ()

# Convert results to DataFrames
VaR_df = pd.DataFrame(VaR_results).set_index([’Ticker’, ’Alpha’])
ES_df = pd.DataFrame(ES_results).set_index([’Ticker’, ’Alpha’])

# Format the Alpha index as percentages
VaR_df.index = VaR_df.index.set_levels([VaR_df.index.levels[0],
[f"{int (a*100)}%" for a in VaR_df.index.levels[1]]])
ES_df.index = ES_df.index.set_levels([ES_df.index.levels[0],
[f"{int (a*x100)}%" for a in ES_df.index.levels[1]]])

# Display VaR DataFrames
print ("===_Value-at-Risky(VaR) _Results ==="
display(VaR_df)

# Display ES DataFrames
print ("\n===_Expected Shortfall,,(ES) _Results ==="
display(ES_df)

# Save and show plots

axes[-1] .set_xlabel("Loss")

plt.tight_layout ()
plt.savefig(os.path.join(OUT_DIR, "loss_pdfs.png"))
plt.show()

# 4% [markdown]

# The PDF plots reveal deviations from Gaussianity across assets, with all three showing
heavier tails and stronger kurtosis than the normal model can capture. Student-t and
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conditional parametric approaches provide better tail fitting, while FHS most closely
reproduces the empirical distributional features. The differences across AAPL, META, and
JPM further confirm that tail behaviour is asset-dependent.

# %% [markdown]
# ## 3) Rolling-window backtesting of VaR and ES

# X% [markdown]

# Use a rolling window of size W to produce 1-step-ahead VaR/ES at 957 and 99J for each
method in Ezercise 2. Then, implement the following statistical tests:

#

# - VaR backtests: Kupiec POF and Christoffersen independence tests.

# - ES backtest: AcerbiSzkely Z1 test.

# 1%

METHODS = {
"historical": historical_simulation,
"gaussian": gaussian_normal_distribution,
"student": student_var_es,
"parametric": conditional_parametric_var_es,
"fhs": filtered_historical_simulation

# Put results into a nice rolling forecast dataframe
def rolling forecast(L, W, methods, confidence):
results = []
for name, func in methods.items():
for metric in ["VaR", "ES"]:
for a in confidence:
series = L.rolling(W).apply(
lambda loss: func(loss, confidence) [metric] [a]
)
series.name = (name, metric, a)
results.append(series)

out = pd.concat(results, axis=1)
# Make it into a nice dataframe to factilitate computations
out.columns = pd.MultiIndex.from_tuples(out.columns, names=["method", "metric", "alpha"

D
return out.dropna(how="all")

rolling results = {}
for ticker in TICKERS:
print (f’Processing {ticker}...’)
L = -log_returns[ticker]
rolling_results[ticker] = rolling_forecast(L, WINDOW, METHODS, CONFIDENCE)

clear_output ()
display(rolling_results)

# 0

import matplotlib.dates as mdates

def plot_var_subplots(rolling results, log_returns, tickers, methods_to_plot, confidence
=0.95):

n_methods = len(methods_to_plot)
n_tickers = len(tickers)
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fig, axes = plt.subplots(n_methods, n_tickers, figsize=(6*n_tickers, 3*n_methods),
sharex=True)

for i, method in enumerate(methods_to_plot):
for j, ticker in enumerate(tickers):

ax = axes[i, j]

L = -log_returns([ticker].dropna()
df = rolling_results[ticker]

VaR_series = df [(method, "VaR", confidence)].dropna()

# Align loss and VaR indices
common_idx = L.index.intersection(VaR_series.index)
L_aligned = L.loc[common_idx]
V_aligned

VaR_series.loc[common_idx]

ax.plot(L.index, L.values, color="black", alpha=0.35, linewidth=0.9)
ax.plot(V_aligned.index, V_aligned.values, linewidth=1.6, label=f"{method} VaR")

violations = L_aligned > V_aligned

ax.scatter(
L_aligned[violations].index, L_aligned[violations].values,
color="red", marker="x", s=50

)
# Titles
if i ==
ax.set_title(f"{ticker}", fontsize=14, fontweight="bold")
if j == 0:
ax.set_ylabel (f"{method}\nLoss,/ VaR", fontsize=11)
# Grad

ax.grid(alpha=0.3)
ax.legend(fontsize=8, loc="upper left")

#Prevent overlapping date labels

if 1 == n_methods - 1: # only bottom row shows dates
ax.xaxis.set_major_locator (mdates.MonthLocator (interval=3))
ax.xaxis.set_major_formatter(mdates.DateFormatter (’%Y-%m’))
plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)

else:
ax.set_xticklabels([])

plt.suptitle(f"Rolling VaR, vs Realized Losses,({int(confidence*100)2}% Confidence)",
fontsize=16, fontweight="bold")

plt.tight_layout(rect=[0, 0, 1, 0.96])

plt.show()

plt.suptitle(£f"Rolling VaR, vs Realized Losses,({int(confidence*100)1}, Confidence)",
fontsize=16, fontweight="bold")
plt.tight_layout(rect=[0, 0, 1, 0.97])

plt.show()
methods_to_plot = ["historical", "fhs", "gaussian", "student", "parametric"]
methods_to_plot = ["historical", "fhs", "gaussian", "student", "parametric"]

plot_var_subplots(rolling_results=rolling_results, log_returns=log_returns, tickers=TICKERS,
methods_to_plot=methods_to_plot, confidence=0.95)
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# 4% [markdown]

# From this plot, we observe that the non-parametric methods produce relatively flat VaR
curves, since they do not explicitly react to changes in volatility as it ts washed out
by the estimation window. In contrast, the parametric approaches such as FHS and the
conditional parametric model adjust the VaR threshold dynamically and capture local
volatility spikes.

# %

def kupiec_pof_test(VaR_series, L_series, alpha):
nnn

LuuuKupiec;(1995)  Proportion of Failures,,(POF) jtest.

uuuuHO 1 The ,observed failure rate equals alpha.

nmnn
[ [

df = pd.concat([VaR_series, L_series], axis=1)
df.columns = [’VaR’, ’Loss’]
df = df.dropna()

# Identify breaches
df [’breached’] = df[’Loss’] > df[’VaR’]

# Compute statistics

x = df [’breached’].sum()
n = len(df)

alpha_hat = x / n

# Edge cases
if alpha_hat == 0 or alpha_hat == 1:
return np.nan

# Kupiec POF statistic

POF = 2 * np.log(
((1 - alpha_hat) / (1 - alpha))**x(n - x) *
(alpha_hat / alpha)**x

return POF

# %
def christoffersen(VaR_series, L_series):

uuuuChristoffersen;;(1998) ,conditional coverage test

nun
I

VaR = pd.Series(VaR_series, name="VaR").astype(float)
Loss = pd.Series(L_series, name="Loss").astype(float)
df = pd.concat([VaR, Loss], axis=1).dropna()

# Breach tndicator
df [’breached’] = df[’Loss’] > df[’VaR’]

# Previous breach via shift
df [’breached_previous’] = df [’breached’].shift(1)

# Keep rows where previous state is defined
df = df.dropna(subset=[’breached_previous’])

Transition counts using boolean masks
= (("df [’breached’]) & (~df[’breached_previous’])).sum()
= (( df [’breached’]) & ("df[’breached_previous’])).sum()

#

N_O
N_O
N_1 (("df [’breached’]) & ( df[’breached_previous’])).sum()

o = O
|
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N_1_1 = (( df [’breached’]) & ( df[’breached_previous’])).sum()

N=NOO+NO1+N10+N_1_1
if N == 0:
return np.nan # not enough transitions

denom0 = N_0_O0 + N_O_1 # times with prev=0
denoml = N_1_0 + N_1_1 # times with prev=I
if denomO == 0 or denoml ==

return np.nan

pi_0 = N_O_1 / denomO
pi_1 = N_1_1 / denoml
P = (N_O_1 + N_1_1) / N

# In case log(0)

eps = le-12

pi_O = np.clip(pi_0, eps, 1 - eps)
pi_1 = np.clip(pi_1, eps, 1 - eps)

P = np.clip(p, eps, 1 - eps)
LO_log = (N_0O_O + N_1_0) * np.log(l - p) + (N_O_1 + N_1_1) * np.log(p)
L1_log = (N_O_O * np.log(l - pi_0) + N_O_1 * np.log(pi_0) +
N_1_0 * np.log(l - pi_1) + N_1_1 * np.log(pi_1))
LR_ind = -2 * (LO_log - L1_log)

return LR_ind

# %

def chi_square_test(t_stat, df, method_name, test_name)
print (f’Performing, {test_name}’)
p_value = 1 - chi2.cdf(t_stat, df = df)

print (f’The teststatistic_and pvalue for {method_name} are,: t_stat {t_statl}, p_value,
{p_value}’)

if p_value < 0.05 :
print (f’Reject the null hypothesis at 5% significance level for {method_namel}.\n’)
else :
print (f’Fail to reject the null, hypothesis at 5% significance level for {method_name
}.\n’)

return p_value

# 0%
confidence = 0.95
alpha = 1 - confidence
METHODS = [’historical’, ’gaussian’, ’student’, ’parametric’, ’fhs’]
result = pd.DataFrame(columns = [’Ticker’, ’Method’, ’test_statistic_pof’, ’p_value_pof’, ’
test_statistic_cd_coverage’, ’p_value_cd_coverage’])
for ticker in rolling results.keys()
print (’-’*115)
for method in METHODS:
ticker_df = rolling_results[ticker] [method] [’VaR’] [confidence]
ticker_loss = -log_returns[ticker]

df = pd.DataFrame({"Loss": ticker_loss, "VaR": ticker_df})
# Shift loss series to align with VaR forecasts

df ["Loss"] = df["Loss"].shift(-1)

df = df.dropna()

POF = kupiec_pof_test(df[’VaR’], df[’Loss’], alpha)

INC = christoffersen(df[’VaR’], df[’Loss’])
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result = pd.concat ([
result,
pd.DataFrame ([{
’Ticker’: ticker,
’Method’: method,
’test_statistic_pof’: POF,
’p_value_pof’: chi_square_test(
POF, df=1, method_name=f’{ticker} - {method}’, test_name=’POF test’
),
’test_statistic_cd_coverage’: INC + POF,
’p_value_cd_coverage’: chi_square_test(
INC + POF, df=2, method_name=f’{ticker} -_{method}’, test_name=’
Christoffersen ,conditional,,coverage test’
)
1D)

], ignore_index=True)

print (’-’*115)

# I
result.pivot(index=[’Ticker’, ’Method’], columns=[], values=[’test_statistic_pof’, ’
p_value_pof’, ’test_statistic_cd_coverage’, ’p_value_cd_coverage’])

# X% [markdown]

# Across assets, all VaR models pass both the coverage and independence tests for META and
JPM, indicating that their VaR and ES forecasts are statistically consistent with
observed losses.

# In contrast, every model fatls for AAPL, indicating an underestimation of the tail risk.

#

# We tdentify whether failures come from biased coverage or clustered exceptions by checking
which test rejects the null: Kupiec detects tncorrect violation frequency, while
Christoffersens independence test reveals clustering, combining both indicates full

model adequacy.

#

# Since AAPL fails both the unconditional coverage test and the joint conditional coverage
test for each methods, this confirms biased coverage, indicating that the models
systematically underestimate tts tail risk captured.

# nh
def es_backtest_zl(VaR_series, ES_series, Loss_series):
nnn

uuuuImplements the MSCIZ1 Expected Shortfall backtest, (Acerbi & Szekely, 2014)

uuuuUsing the ,’X_t’ definition: ,P&L, (positive=profit, negative=loss)

nmnn
[ [

VaR = pd.Series(VaR_series, name="VaR", dtype="float64")

ES = pd.Series(ES_series, name="ES", dtype="float64")

Loss = pd.Series(Loss_series, name="Loss", dtype="float64")
df = pd.concat([VaR, ES, Loss], axis=1).dropna()

df["I_t"] = (df["Loss"] > df["VaR"]).astype(int)

N_T = int(df["I_t"].sum())

if N_T == 0:
return np.nan # No breaches, Z1 undefined

Z_1 = ( (@f["Loss"] * d4f["I_t"]) / df["ES"] ).sum() / N_T - 1

return Z_1
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def monte_carlo_es_backtest_zl1(VaR_series, ES_series, Loss_series, sampler, window, M=1000):
nnn

uuuuVaR_series, ES_series| : jpandas.Series

uuuuuuuuOut-of -sample \VaR/ES forecasts,same index ,(e.g. from_ rolling forecast).

uuuuLoss_series; :pandas.Series

LuuouuuuFulllossseries; (in-sample + ,out-of-sample) , NOT_ truncated.

uuuusampler (window_array, M) ,—> np.ndarray of shape, (M,)

uuuuuuuuFunction that, given a window o0f losses, returns M simulated losses.

uuuuwindow, i int

LuuuuuuuRolling window length, used, jto estimate VaR/ES.

uoouMyspint

uuuuuuuuNumber jof Monte,Carlo  paths.

uuuuReturns
|_||_|uuZ 1|_| cunp. ndarrayHoquhapeu (M s )
uuuuuuuuMonte Carlodistributionof jthe ES backtest statistic Z1.

nun
I

# Make sure everything is aligned and sorted
VaR = VaR_series.sort_index()
ES = ES_series.reindex(VaR.index) # ensure same indexz/order

# Full loss series (sorted)

Loss_series = Loss_series.sort_index()

x = np.asarray(Loss_series, dtype=float)
loss_index = Loss_series.index

idx = VaR.index # out-of-sample dates
T = len(idx)

sims = np.empty((M, T), dtype=float)

# For each date, build the same rolling window used to estimate VaR/ES
for j, date in enumerate(idx):
loc = loss_index.get_loc(date) # position of this date in the full loss sertes

# Window of length ‘window‘ ending at ‘date’
w = x[loc - window + 1 : loc + 1]

draws = sampler(w, M)

sims[:, j] = draws

# Compute Z1 for each simulated path

Z1 = np.empty(M, dtype=float)

for m in range(M):
sim_series = pd.Series(sims[m], index=idx)
Z1[m] = es_backtest_z1(VaR, ES, sim_series)

return 71
# 5%
sampler = {’historical’: historical_sampler, ’gaussian’: gaussian_sampler, ’student’:

student_sampler, ’parametric’: conditional_parametric_sampler, ’fhs’: fhs_sampler}

result = pd.DataFrame(columns=[’Ticker’, ’Method’, ’Z1_stat’, ’p_value_es_backtest’])
confidence = 0.95

for ticker in rolling results.keys(Q:
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print(’-’ * 115)

# Full loss series for this ticker (same as in rolling_forecast)
ticker_loss = -log_returns[ticker].dropna()
for method in METHODS:
ticker_df_es = rolling_results[ticker] [method] [’ES’] [confidence]
ticker_df_var = rolling_ results[ticker] [method] [’VaR’] [confidence]

Z_1_simulated monte_carlo_es_backtest_z1(ticker_df_var, ticker_df_es, ticker_loss,
sampler [method] , window=WINDOW, M=1000)

real_Z1 = es_backtest_zl(ticker_df_var, ticker_df_es, ticker_loss)

p_value = (Z_1_simulated >= real_Z1).sum() / len(Z_1_simulated)
result = pd.concat([result,pd.DataFrame([{’Ticker’: ticker, ’Method’: method, ’
Z1_stat’: real_Z1, ’p_value_es_backtest’: p_value}])], ignore_index=True)

print (f’The teststatisticand p value for {ticker} - {method} are :’f’Z1_stat,{
real_Z1}, p_value_ {p_value}’)
if p_value < 0.05:
print (f’Reject the null hypothesis at 5k significance level for {ticker} - {
method}.\n’)
else:
print (f’Fail toyreject the null hypothesis at 5% significance level for {ticker}
-,{method}.\n’)

# nl
result.pivot(index=[’Ticker’, ’Method’], columns=[], values=[’Zl_stat’ ,’p_value_es_backtest

1)

# 4% [markdown]

# For AAPL, only the Gausstian ES model fails the $Z_1% test, with a p-value of $08,
indicating that the Gaussian assumption systematically underestimates tatl severity.

# All other models exhibit p-values above 5\7, indicating that their ES estimates are
statistically compatible with the realized tail losses.

# For META, the Gaussian model fails, with a very small p-value of $0%, indicating that the
Gausstan assumption systematically underestimates tatl severity.

The conditional parametric model also fails with a p-value of $2\cdot10°{-2}¢

All other models exzhibit p-values above 5\) showing no statistical evidence of ES
misspecification.

S

H oW W W

For JPM, the Gaussian model has p-value $0§ and the parametric model $0$% and the student
model $3.50\cdot10°{-2}$ both fail the $Z_1§ test. These models underpredict the
magnitude of extreme losses. The historical and FHS models pass, indicating that their
ES forecasts align with realized tatil behavior.

# Across the three assets, the results show that ES model performance is strongly asset
dependent, reflecting differences in tatl behaviour across return distributions. A
common pattern is that the Gaussian model systematically fails for all assets,
confirming that its thin-tailed distributional assumption leads to persistent
underestimation of extreme losses. However, the fact that different models fail for
different assets highlights that the appropriateness of an ES model depends critically
on asset-specific tatl dynamics. Notably, the filtered historical simulation performs
well across all cases, suggesting that its semi-parametric structure offers robust
flexzibility in practice.
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# 4% [markdown]
# ## 4) Copula fitting (first window)

# 4% [markdown]

# - a. Visualize dependence in returns and copula sSpace using pseudo-observations.

# - b. Fit Gausstian and t copulas; report parameters.

# - c. Simulate from fitted copulas and map to empirical marginals; compare with original
returns.

# 0

# TODO

# Use copulae package for copula fitting and sampling

# cop = copulae.elliptical.GaussianCopula(dim=1len(TICKERS))

# cop.fit(data)

# samples = cop.random(n)

# 4% [markdown]

# ### a. Pseudo-observations and dependence visualization

#

# Pseudo-observations transform the marginal distributions to uniform $[0,1]$ using
empirical ranks:

#

# 3%

# U_{t,2} = \frac{\text{rank}(R_{t,<})} {W+1}, \quad t = 1,\ldots,W

# 88

#

# This allows us to visualize the **pure dependence structure** (copula) separately from

marginal behavior.

# 0%
# Extract the first estimation window (W=252 observations) across assets
returns_window = log_returns.iloc[:WINDOW] .copy()

# Compute pseudo-observations (empirical quantiles)
def compute_pseudo_obs(data):

nnn
uuuuTransformudatautoupseudo-observationquuinu[O,1]uusinguempiricaluranks.
uuuuU_{t s i}|_|=|_,ran.k (R_{t N l}) |_|/|_| (n+1)

nnn
[ [

n = len(data)
U = data.rank() / (n + 1)
return U

pseudo_obs = compute_pseudo_obs (returns_window)

print ("Pseudo-observations, (first, 5 rows):")

print (pseudo_obs.head())

print (£"\nShape: {pseudo_obs.shapel}")

print (f"Range:[{pseudo_obs.min() .min() : .4f}, {pseudo_obs.max() .max():.4f}]1")

# 5%

returns_window.describe ()

# 5%

# Visualize dependence: raw returns space vs copula (pseudo-observations) space
pairs = list(combinations(TICKERS, 2))

n_pairs = len(pairs)

fig, axes = plt.subplots(2, n_pairs, figsize=(6*n_pairs, 10))
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for j, (asset_i, asset_j) in enumerate(pairs):
# Raw returns space
ax_raw = axes[0, j]
ax_raw.scatter (returns_window[asset_i], returns_window[asset_j],

alpha=0.5, s=20, edgecolors=’k’, linewidths=0.5)

ax_raw.set_xlabel (f’{asset_i} returns’)
ax_raw.set_ylabel(f’{asset_j} returns’)
ax_raw.set_title(f’Raw_Returns: {asset_il} vs_{asset_j}’)
ax_raw.grid(True, alpha=0.3)

# Copula space (pseudo-observations)
ax_copula = axes[1, j]
ax_copula.scatter(pseudo_obs[asset_i], pseudo_obs[asset_j],

alpha=0.5, s=20, edgecolors=’k’, linewidths=0.5, color=’coral’)
ax_copula.set_xlabel(f’U({asset_i})’)
ax_copula.set_ylabel(f’U({asset_j})’)
ax_copula.set_title(f’Copula Space: {asset_i} vs_ {asset_j}’)
ax_copula.set_x1im(0, 1)
ax_copula.set_ylim(0, 1)
ax_copula.grid(True, alpha=0.3)

plt.tight_layout ()
plt.savefig(os.path.join(OUT_DIR, ’raw_returns_vs_pseudo_obs.png’))
plt.show()

4% [markdown]
##### Interpretation of Raw Returns and Copula Space

**Raw returns**

B oW W R R R

The ** AAPLMETA ** pair exzhibits a clear upward-sloping cloud, indicating a postitive
dependence and frequent joint large moves. In contrast, **AAPLJPM** and **METAJPM** show
more diffuse scatter patterns, reflecting weaker dependence between tech firms and a
bank. Across all pairs, extreme returns are more dispersed than expected under mormality
, suggesting heavy-tailed behavior and occasional simultaneous large shocks.

**Copula spacexx

H W R R

In copula space, **AAPLMETA** displays a marked diagonal structure, confirming a positive
dependence. The clustering of observations near the corners (0,0) and (1,1) further
reveals tail dependencemeaning that extreme moves tend to occur together. By comparison,

**AAPLJPM** and **METAJPM** resemble an almost uniform cloud over \([0,1]7°2\),
confirming weaker dependence and only marginal tatl co-movement.

*xImplications for copula choicex**

B oW W R

Given the evident heavy tatls and clear tatl dependence in **AAPLMETA**, a Gausstan copula
, though adequate for symmetric dependence, cannot capture the probability mass in the
joint extremes. The Student-t copula, however, explicitly models tail dependence and s
therefore the appropriate copula for this portfolio. Its structure aligns with the
empirical behavior of the assets, particularly the strong, tatl-driven co-movements
between the two tech stocks. Consequently, the Student-t copula provides a more
realistic representation of joint downside risk than its Gaussian counterpart.

A% [markdown]
### b. Fit Gausstian and Student-t copulas

**Gaussian Copula:**

£

C-\text{Gauss}(u_1, \ldots, u_d; \Sigma) = \Phi_\Sigma\big(\Phi {-1}(u_1), \ldots, \Ph%
“{-1}(u_d) \big)

HOWHOR R KRR
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where $\Phi_\Sigma$ is the multivariate normal CDF with correlation matriz $\Sigma$.

**Student-t Copula:**

£

C t(u_1, \ldots, u_d; \Sigma, \nu) = T_{\Sigma, \nuF\big(T_\nu~{-1}(u_1), \ldots, T_\nu
“{-1}(u_d) \big)

£

where $T_{\Sigma, \nult$ is the multivariate Student-t CDF with correlation $\Sigma$ and
degrees of freedom $\nu$.

BHOWOR R KRR

H* W

# 5%

# Fit Gaussian Copula

gauss_cop = copulae.elliptical.GaussianCopula(dim=1len(TICKERS))
gauss_cop.fit(pseudo_obs.values, to_pobs=False)

gauss_corr = pd.DataFrame(gauss_cop.sigma, index=TICKERS, columns=TICKERS)
gauss_loglik = gauss_cop.log_lik(pseudo_obs.values, to_pobs=False)
gauss_num_params = len(gauss_cop.params)

print ("GAUSSIAN, ,COPULA\n")
print(gauss_corr.round(4))

print (f"\nLog-Likelihood: {gauss_loglik:.4f}")
print (f"Number of Parameters: {gauss_num_params}")

# 1%
d = 1en(TICKERS)

# Fit Student-t Copula
t_cop = copulae.StudentCopula(dim=d)
t_cop.fit(pseudo_obs.values, to_pobs=False)

print ("STUDENT-T, ,COPULA\n")

nu = t_cop.paranms[0]

print ("Correlation Matrix sigma:")
corr_matrix = t_cop.sigma

print (pd.DataFrame(corr_matrix, index=TICKERS, columns=TICKERS).round(4))

t_loglik = t_cop.log_lik(pseudo_obs.values, to_pobs=False)
t_num_params =d * (d - 1) // 2 + 1

print (f"\nLog-Likelihood: {t_loglik:.4f}")
print (f"Number of Parameters: {t_num_params}")
print (f"Degrees of Freedom nu: {nu:.4f}")

# %% [markdown]
# ##### Explanation of the fitting procedure

#

# We first transform the returns into **pseudo-observations**

# 388

# U At, 1} = \frac{\text{rank} (R_{t, i}) HW+1}

# 88

# so each marginal is approzimately uniform on \[0,1]\.

#

# This allows us to fit the copulas **only on the dependence structure**.

#

# Both copulas are then fitted using **maxzimum likelihood**: the pseudo-observations are

transformed using the appropriate inverse CDF, and the log-likeltihood is maxrimized over
the copula parameters.
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**xGaussian copula.**
Mazimizes the likelihood over the correlation matriz $\Sigma$ only, after applying the

inverse mnormal CDF.

**xStudent-t copula.**
Same procedure as the Gaussian copula, but with one additional parameter: the **degrees of

freedom** $\nu$, which controls tatl dependence.

Thus, both models share the same fitting framework. The Student-t copula simply includes

an extra parameter to capture heavier joint tatls.

A% [markdown]
### c. Simulate from copulas and compare with original returns

We simulate from the fitted copulas and map back to the original return scale using

empirical marginals.

# 4% [markdown]

# 1. **Generate uniform samples (dependence only)**

#

#  From the fitted copula $C_\theta$, we simulate

# 83

# U{(t)} = (U{(t)}_1, \dots, U {(t)}_d) \sim C_\theta, \qquad t = 1,\dots,T,

# 88

#  where $U{(t)}_i \in (0,1)8.

# These uniforms encode the **dependence structure** of the Gaussian or Student-t copula.

#

# 2. *xApply the inverse empirical CDFs (recover marginals)**

#

#  For each asset $i8, let $\hat F_i"{-1}$ denote the empirical quantile function built
from the observed returns.

# Each uniform component ts transformed via

# 83

# X~ {(t)}_i = \hat F_i~{-1}\!\left (U{(t)}_i\right),

# 88

# which ensures the simulated data have the **same marginal distribution** as the
original returns.

#

# 3. **Construct simulated return series*x*

#

# Repeating this for all assets and all samples produces two synthetic datasets,

# 8

# X {(t)}_{\text{Gauss}}F, \quad

# X {(t)} _{\text{t-copulat}

# 8

# each with the original empirical marginals but with dependence dictated by the fitted
Gaussian or Student-t copula.

# 5%

T = len(log_returns)
print (f"Simulating, ,T={T} samples from each fitted, copula...")

# Sample U ~ Copula
U_gauss = gauss_cop.random(T)

U_

t

= t_cop.random(T)

# 00

def inverse_empirical(u, data):

uuuuStrict monotonicinverse-ECDF jusing ,interpolation
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uuuuMapsuniform U to real observed distribution of data.

nmnn
[ [

data_sorted = np.sort(data)
ranks = (np.arange(l, len(data_sorted) + 1)) / (len(data_sorted) + 1)
return np.interp(u, ranks, data_sorted)

# Il
sim_gauss = pd.DataFrame ({
ticker: inverse_empirical(U_gauss[:, i], log_returns[ticker].values)
for i, ticker in enumerate (TICKERS)
B
sim_t = pd.DataFrame ({
ticker: inverse_empirical(U_t[:, i], log_returns[ticker].values)
for i, ticker in enumerate(TICKERS)

)

print ("\nSimulated, returns,(Gaussian):")
display(sim_gauss.head())

print ("\nSimulated returns,(Student-t):")
display(sim_t.head())

# %
fig, axes = plt.subplots(

2, len(TICKERS), figsize=(5 * 1len(TICKERS), 8), squeeze=False
)

for j, tk in enumerate(TICKERS):

# Shared bins across original + both simulations
pooled = np.concatenate([log_returns[tk], sim_gauss[tk], sim_t[tk]])
bins = np.histogram_bin_edges(pooled, bins=’auto’)

# -—-—— Row 1: Original vs Gaussian ———-

ax = axes[0, j]

ax.hist(log_returns[tk], bins=bins, density=True, alpha=0.5,
label="0Original", edgecolor="k", color="tab:blue")

ax.hist(sim_gauss[tk], bins=bins, density=True, alpha=0.5,
label="Gaussian copula", edgecolor="k", color="tab:orange")

ax.set_title(f"{tk}, ,Original vs Gaussian")

ax.set_xlabel ("Return")

ax.set_ylabel("Density")

ax.grid(True, alpha=0.3)

# ---- Row 2: Original vs Student-t ———-

ax = axes[1, j]

ax.hist(log_returns[tk], bins=bins, density=True, alpha=0.5,
label="0Original", edgecolor="k")

ax.hist(sim_t[tk], bins=bins, density=True, alpha=0.5,
label="Student-t_ copula", edgecolor="k", color="tab:olive")

ax.set_title(f"{tk}, ,Original vs Student-t")

ax.set_xlabel ("Return")

ax.set_ylabel("Density")

ax.grid(True, alpha=0.3)

# Define legend patches manually

original_patch = mpatches.Patch(facecolor="tab:blue", alpha=0.5, label="Original", edgecolor
="k")

gaussian_patch = mpatches.Patch(facecolor="tab:orange", alpha=0.5, label="Gaussian,copula",
edgecolor="k")

student_t_patch = mpatches.Patch(facecolor="tab:olive", alpha=0.5, label="Student-t,copula",
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edgecolor="k")

fig.legend(
handles=[original_patch, gaussian_patch, student_t_patch],
loc="upper center", ncols=3, frameon=False

plt.tight_layout(rect=[0, 0, 1, 0.92])
plt.savefig(os.path.join(OUT_DIR, ’copula_marginal_distributions_split.png’))
plt.show()

# J% [markdown]
# The histograms show that both simulated datasets closely match the original return
distributions, as expected from using empirical quantile mapping.

# 5%

# Dependence structure

pairs = list(combinations(TICKERS, 2))

fig, axes = plt.subplots(3, len(pairs), figsize=(6 * len(pairs), 14), squeeze=False)

for col, (a, b) in enumerate(pairs):
# 1) original
ax = axes[0, coll
ax.scatter(log_returns[al, log_returns[b], alpha=0.5, s=15)
ax.set_title(f"Original: {a}t vs_ {b}")
ax.grid(True, alpha=0.3)

# 2) Gaussian

ax = axes[1, coll]

ax.scatter(sim_gauss[al], sim_gauss[b], alpha=0.5, s=15)
ax.set_title(f"Gaussian, Sim: {a} vs_ {b}")

ax.grid(True, alpha=0.3)

# 3) Student-t

ax = axes[2, col]

ax.scatter(sim_t[a], sim_t[b], alpha=0.5, s=15)
ax.set_title(f"Student-t_ Sim: {a} vs_ {b}")
ax.grid(True, alpha=0.3)

# annotate rows

axes[0,0] .set_ylabel("Original")
axes[1,0] .set_ylabel("Gaussian")
axes[2,0] .set_ylabel("Student-t")

plt.tight_layout ()
plt.savefig(os.path.join(OUT_DIR, ’copula_dependence_structure.png’))
plt.show()

# 4% [markdown]

# The scatter plots indicate that both copulas reproduce the overall dependence structure.
The Student-t copula generates slightly more joint extremes, but the differences remain
modest given the estimated degrees of freedom.

# 0%

# Align simulated data indexr with original returns
sim_gauss.index = log_returns.index[:len(sim_gauss)]
sim_t.index = log_returns.index[:len(sim_t)]

# Consistent colors with your histogram

COL_ORIG = "tab:blue"
COL_GAUS = "tab:orange"

o1



COL_T = "tab:olive"

fig, axes = plt.subplots(

for

handlesl, labelsl
handles2, labels2

2, len(TICKERS), figsize=(5 * 1len(TICKERS), 8),
squeeze=False, sharex=’col’

j, tk in enumerate(TICKERS):

# ——— Row 1: Original vs Gaussian ————-—
ax = axes[0, j]
ax.plot(log_returns.index, log_returns[tk],

lw=1, label="Original", color=COL_ORIG)
ax.plot(sim_gauss.index, sim_gauss[tk],

lw=1, label="Gaussiancopula", color=COL_GAUS)
ax.set_title(f"{tk}, (Original vs_ Gaussian,(Time Series)")
ax.set_ylabel("Return")
ax.grid(True, alpha=0.3)
# no z-label on top row

# ———- Row 2: Original vs Student-t ————-
ax = axes[1, j]
ax.plot(log_returns.index, log_returns[tk],

lw=1, label="Original", color=COL_ORIG)
ax.plot(sim_t.index, sim_t[tk],

lw=1, label="Student-t_copula", color=COL_T)
ax.set_title(f"{tk}, (Original ,vs_ Student-t,,(Time Series)")
ax.set_xlabel("Time")
ax.set_ylabel ("Return")
ax.grid(True, alpha=0.3)
ax.tick_params(axis="x", rotation=45) # nicer date labels

axes[0, 0].get_legend_handles_labels()
axes[1, 0].get_legend_handles_labels()

handles = list(handles1)
labels = list(labelsl)

for

fig

plt
plt
plt

®* R

H R R R

B W

h, lab in zip(handles2, labels2):

if lab not in labels:
handles.append (h)
labels.append(lab)

.legend(handles, labels,

loc="upper center", ncols=3, frameon=False)

.tight_layout(rect=[0, 0, 1, 0.92])
.savefig(os.path.join(OUT_DIR, "copula_time_series_comparison.png"))
.show ()

A% [markdown]
The plots above compare the original return series with returns simulated using Gaussian

and Student-t copulas for AAPL, META, and JPM.

Key observations:

**0verall return dynamics:** All series fluctuate around zero with frequent sign changes

, consistent with daily stock return behavior.

**Volatility clustering:** The **original data** exhibit pertiods where large movements
are followed by other large movements (both positive and negative), particularly visible
tn META and AAPL around early 2024. Both copula stmulations **partially replicatex*
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this phenomenon, but the effect is **more pronounced in the Student-t copula**, where
clusters of large returns appear more frequently, especially for META.

# - **Gausstan copula behavior:** The Gaussian generated series tracks the general
variability of the original returns but displays **smoother fluctuations**. Large spikes

are **less frequent and less intensex*, indicating that the Gaussian copula **
underestimates tatl events** and does not fully capture periods of heightened volatility

# - *xStudent-t copula behavior:** The Student-t simulated paths show **higher ampltitude
Jjumps and more erratic bursts**, aligning more closely with the original heavy-tatiled
structure. This copula better reproduces **extreme shocks and volatility clustering*x,
particularly visible in META and JPM, where large returns tend to appear in temporal
clusters.

# While both copulas mimic the central fluctuations of the return series, **the Student-t
copula provides a more realistic replication of extreme events and volatility clustering
*x, making 1t more suttable for modeling financial return dynamics and risk.

# X% [markdown]
# ## 5) Portfolio VaR/ES with copulas (rolling)

# J% [markdown]
# Equal-weighted portfolio of AAPL, MSFT, JPM. Compare univariate models (as in Ezercise 3)
vs copula-based VaR/ES with rolling windows.

# At each time, fit copulas on last W weeks, simulate N scenarios, estimate VaR/ES from
simulated portfolio returns, then backtest.

A% [markdown]
### a. Univariate models on portfolio returns

H W R R

Apply the same backtesting procedure as in question 3, but now on equal-weighted portfolio
returns.

# 7

# Compute equal-weighted portfolio returns

# Portfolio return = (1/3) * R_AAPL + (1/3) * R_META + (1/3) * R_JPM
weights = np.array([1/3, 1/3, 1/31)

portfolio_returns = (log_returns[TICKERS] * weights).sum(axis=1)

print ("Equal-weighted portfolio returns:")

print (£"Shape: {portfolio_returns.shape}")

print (f"Mean: {portfolio_returns.mean():.6f}")
print (£"Std_ Dev: {portfolio_returns.std():.6£f}")
print (£"Min: {portfolio_returns.min():.6£}")
print (f"Max: {portfolio_returns.max():.6£f}")
print ("\nFirst_ 5 portfolio returns:")

print (portfolio_returns.head())

# 00
# Apply rolling-window forecasts to portfolio returns (same as question 3)
print ("Computing, rolling VaR/ES for portfolio using univariate models...")

print (f"Window,size: {WINDOW}_days")
print (f"Confidence levels: {CONFIDENCE}")

METHODS = {
"historical": historical_simulation,
"gaussian": gaussian_normal_distribution,
"student": student_var_es,
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"parametric": conditional_parametric_var_es,
"fhs": filtered_historical_simulation

L_portfolio = -portfolio_returns
portfolio_rolling results = rolling forecast(L_portfolio, WINDOW, METHODS, CONFIDENCE)

print (f"\nRolling forecasts complete")
print (f"Results shape: {portfolio_rolling_results.shape}")
print (f"Number of forecasts: {len(portfolio_rolling_ results.dropna())}")

# 5%

# Backtest portfolio VaR using Kupiec POF test

print ("-"*60)

print ("PORTFOLIO, VaR, BACKTESTING - ,CHRISTOFFERSEN_ ,CONDITIONAL_ COVERAGE TEST - KUPIEC_POF
TEST")

print ("-"*60)

result = pd.DataFrame(columns = [’Confidence Level’, ’Method’, ’POF_p_value’, °’
Christoffersen_p_value’])
for confidence in CONFIDENCE:
alpha = 1 - confidence
print (£"\n{’-’>*60}")
print (f"Confidence Level: {int(confidence*100)}%")
print (£"{’-’*60}\n")

for method in METHODS.keys():
VaR_portfolio = portfolio_rolling results[method] [’VaR’] [confidence]
print (£’ \nPOF_test for Portfolio ,— {method} method:’)
POF = kupiec_pof_test(VaR_portfolio, L_portfolio, alpha)
LR_ind = christoffersen(VaR_portfolio, L_portfolio)
result = pd.concat([
result,
pd.DataFrame ([{

’Confidence Level’: f’{int(confidence*100)1}%’,

’Method’: method,

’POF_p_value’: chi_square_test(POF, df=1, method_name=f’Portfolio - ,{method}’
, test_name=’POF_test’),

’Christoffersen_p_value’: chi_square_test(LR_ind + POF, df=2, method_name=f’
Portfolio~ {method}’, test_name=’Christoffersen conditional,,coverage
test’)

1ap)

1, ignore_index=True)

# Ik

print ("-"*60)

print ("PORTFOLIO, VaR, & ES BACKTESTING")
print ("-"*60)

# Result table: add ES columns

result = pd.DataFrame(columns=[
’Confidence Level’,
’Method’,
’POF_p_value’,
’Christoffersen_p_value’,
’ES_Z1_stat’,
’ES_p_value’

D

portfolio_loss = L_portfolio.sort_index()
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for confidence in CONFIDENCE:
alpha = 1 - confidence
print (£"\n{’-’*60}")
print (f"Confidence Level: {int (confidence*100)3}%")
print (£"{’-’*60}\n")

for method in METHODS.keys():
# - VaR backtests —-—--—--—-——-
VaR_portfolio = portfolio_rolling_results[method] [’VaR’] [confidence]

print (£’ \nPOF_& Christoffersen tests_for Portfolio — {method} method:’)
POF = kupiec_pof_test(VaR_portfolio, L_portfolio, alpha)
LR_ind = christoffersen(VaR_portfolio, L_portfolio)

p_pof = chi_square_test(
POF, df=1,
method_name=f ’Portfolio - {method}’,
test_name=’P0OF_test’

)

p_christoffersen = chi_square_test(
LR_ind + POF, df=2,
method_name=f ’Portfolio - {method}’,
test_name=’Christoffersen;,conditional,,coverage test’

# - ES backtest (AcerbiSzekely Z1) —--—-----—
ES_portfolio = portfolio_rolling_results[method] [’ES’] [confidence]

Z1_simulated = monte_carlo_es_backtest_z1(
VaR_series=VaR_portfolio,
ES_series=ES_portfolio,
Loss_series=portfolio_loss,
sampler=sampler [method],
window=WINDOW,

M=1000

real_Z1 = es_backtest_z1(
VaR_series=VaR_portfolio,
ES_series=ES_portfolio,
Loss_series=portfolio_loss

p_es = (Z1_simulated >= real_Z1).sum() / len(Z1_simulated)

result = pd.concat ([

result,

pd.DataFrame ([{
’Confidence Level’: f’{int(confidence*100)3}%’,
’Method’: method,
’POF_p_value’: p_pof,
’Christoffersen_p_value’: p_christoffersen,
’ES_Z1_stat’: real_Z1,
’ES_p_value’: p_es

13D,

], ignore_index=True)
summary = result.set_index([’Confidence Level’, ’Method’]) [

[’POF_p_value’, ’Christoffersen_p_value’, ’ES_Z1_stat’, ’ES_p_value’]
]
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# %

summary

# 4% [markdown]

# ### b. Copula-based portfolio VaR/ES (rolling)

#

# At each time $t$, fit the copulas as in 4.b) on the last $W$ days of portfolio component
returns. Simulate $N = 10008 returns from each fitted copula, then estimate VaR/ES from
the simulated portfolio returns.

# Ik
def copula_portfolio_var_es(returns_df, tickers, weights, W, N_sim=1000, confidence=
CONFIDENCE) :

uuuuRollingucopula—baseduVaR/ESuestimationuforuportfolio.

uuuuForeach time t,  fit ,Gaussian and, ,Student-t ,copulas on the last W days, of returns,
LuuuSimulate N_simscenarios, construct_ portfolio returns, and, compute VaR/ES.

uuuuParameters:

uuuuuuuureturns_df :pd.DataFrame
uuuuuuuuuuuuLog returns forall jassets
uuuuuuuutickersiylist
uuuuuuuuuuuulistyofticker  symbols
uuuuuuuuweights,:np.array
uuuuuuuuuuuuPortfolio weights  (should,sum toy 1)
LuuuuuuuWy s uint
uuuuuuuuuuuuRo11ling window size
uuuuuuuoN_simg:yint
LuuuuuuuuuuuNumber of, Monte Carlosimulations
uuuuuuuualphas; g list
uuuuuuuuuuuuConfidence levels

uuuuReturnS .
uuuuuuuuresultSu . \_,diCt
uuuLLuLLuuuuuPictionary with )’ gaussian’and,,’ student’ keys, each ,containing VaR,,and ES

forecasts

nun
I

T = len(returns_df)

# Initialize result storage
results = {
’gaussian’: {
’VaR’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence
},
’ES’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence}
},
’student’: {
’VaR’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence
},

’ES’: {a: pd.Series(index=returns_df.index[W:], dtype=float) for a in confidence}

# Rolling window estimation

for t in range(W, T):
# Eztract window data
window_returns = returns_df.iloc[t-W:t] [tickers].copy()
pseudo_obs = compute_pseudo_obs(window_returns)

# Fit Gaussian copula
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gauss_cop = copulae.elliptical.GaussianCopula(dim=len(tickers))
gauss_cop.fit(pseudo_obs.values, to_pobs=False)

# Fit Student-t copula
t_cop = copulae.StudentCopula(dim=len(tickers))
t_cop.fit(pseudo_obs.values, to_pobs=False)

# Simulate from copulas
U_gauss = gauss_cop.random(N_sim)
U_t = t_cop.random(N_sim)

# Convert copula samples to returns
sim_returns_gauss = np.zeros((N_sim, len(tickers)))
sim_returns_t = np.zeros((N_sim, len(tickers)))

for i, ticker in enumerate(tickers):
sim_returns_gauss[:, i] = inverse_empirical(U_gauss[:, i], window_returns[ticker
].values)
sim_returns_t[:, i] = inverse_empirical(U_t[:, i], window_returns[ticker].values)

# Compute portfolio returns and losses
portfolio_returns_gauss = sim_returns_gauss @ weights
portfolio_returns_t = sim_returns_t @ weights

portfolio_losses_gauss = —-portfolio_returns_gauss
portfolio_losses_t = -portfolio_returns_t

# Compute VaR and ES for each confidence level
current_date = returns_df.index[t]

for a in confidence:
# Gaussian copula
VaR_gauss = np.percentile(portfolio_losses_gauss, a * 100)
ES_gauss = portfolio_losses_gauss[portfolio_losses_gauss >= VaR_gauss].mean()
results[’gaussian’] [’VaR’] [a] .loc[current_date] = VaR_gauss
results[’gaussian’] [’ES’] [a] .loc[current_date] = ES_gauss

# Student-t copula

VaR_t = np.percentile(portfolio_losses_t, a * 100)

ES_t = portfolio_losses_t[portfolio_losses_t >= VaR_t].mean()
results[’student’] [’VaR’] [a] .loc[current_date] = VaR_t
results[’student’] [’ES’] [a] .loc[current_date] = ES_t

return results

# I
def copula_sampler(L_window, M, type=’gaussian’):

nnn
uuuul_window: DataFrame jor 2D array,of shape (T_window, d)
LULLLULLULLULLULUTOWS = time, ucolumns._|=uassets|_,(returns)
uuuuM:  number of ;simulated scenarios
uuuutype:’gaussian’or,’ student’
|_|I_H_H_l" nn

L_window = pd.DataFrame(L_window)

d = L_window.shape[1]

# Pseudo-observations
U = compute_pseudo_obs(L_window)

if type == ’gaussian’:
cop = copulae.elliptical.GaussianCopula(dim=d)
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else:
cop = copulae.StudentCopula(dim=d)

cop.fit(U.values, to_pobs=False)

# Simulate U
U_sim = cop.random(M)

# Map each marginal back
sim_returns = np.zeros((M, d))
for i in range(d):
sim_returns[:, i] = inverse_empirical(U_sim[:, i], L_window.iloc[:, i].values)

# Compute portfolio returns and losses
portfolio_returns = sim_returns @ weights
portfolio_losses = -portfolio_returns

return portfolio_losses

# I
def monte_carlo_es_backtest_zl_copula(VaR_series, ES_series, portfolio_loss, asset_returns,
window, copula_type, M=1000):
nnn
LuuuVaR_series, ES_series: rolling forecasts; (aligned, with_ portfolio_loss)
uuuuportfolio_loss: Series of portfolio losses, (same index as_ VaR/ES)
Luuuasset_returns: DataFrame of asset returns, (same_index as portfolio_loss)
uuuuwindow: rolling window length, jused, to estimate VaR/ES
uuuucopula_type:,’gaussian’ jor,’ student’
uuuuM: unumber, ,0f, Monte ,Carlo  paths

[ [
X = np.asarray(portfolio_loss, dtype=float)
n = len(x)
T =n - window + 1

idx = portfolio_loss.index[window-1:]
sims = np.empty((M, T), dtype=float)

for t in range(T):
# Window of asset returns used for estimation at time t
L_window = asset_returns.iloc[t:t+window, :]
draws = copula_sampler(L_window, M, type=copula_type)
sims[:, t] = draws

VaR = VaR_series.loc[idx]
ES = ES_series.loc[idx]

Z1 = np.empty(M, dtype=float)

for m in range(M):
sim_series = pd.Series(sims[m], index=idx)
Z1[m] = es_backtest_z1(VaR, ES, sim_series)

return Z1

# X
def monte_carlo_es_backtest_zl_copula(
VaR_series,
ES_series,
portfolio_loss,
asset_returns,
window,
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copula_type,
M=1000

uuuuVaR_series, ES_series;: jpandas.Series

uuuuuuuuOut-of -sample \VaR/ES forecasts,same index ,(e.g. from_ rolling forecast).
uuuuportfolio_lossy,:pandas.Series

LuuuuuuuFull portfoliolossseries; (in-sample + out-of-sample) , NOT_ truncated.
uuuuasset_returns,:pandas.DataFrame

LuuuuuLuAsset returns jused to build, the copula, same ,(or superset) index as portfolio_loss.
uuuuwindow i int

LuuuuuuuRolling window length used to estimate ,VaR/ES and, the copula.
uuuucopula_typey:ustr

Luuuuuuy’ gaussian’or,’ student’ (or any type supported by, copula_sampler) .
voooMyiuint

uuuuuuuoNumber jof Monte ,Carlo  paths.

uuuuBReturns
uuuuZlysunp.ndarray, of shape (M,)
uuuuuuuuMonteCarlo distribution of jthe ES backtest statisticZ1.

nun
|

# 1) Align and sort VaR/ES
VaR = VaR_series.sort_index()
ES = ES_series.reindex(VaR.index) # ensure same index/order as VaR

# 2) Sort portfolio losses and asset returns
portfolio_loss = portfolio_loss.sort_index()
asset_returns = asset_returns.sort_index()

loss_index = portfolio_loss.index
ret_index = asset_returns.index

# Out-of-sample dates (where VaR/ES are defined)
idx = VaR.index
T = len(idx)

sims = np.empty((M, T), dtype=float)

# 3) For each 00S date, reconstruct the window used to estimate VaR/ES & copula
for j, date in enumerate(idx):

# Position of this date in the full series

loc_ret = ret_index.get_loc(date)

# Window of length ‘window‘ ending at ‘date’
# (assumes VaR/ES start only after at least ‘window‘ observations)
L_window = asset_returns.iloc[loc_ret - window + 1 : loc_ret + 1, :]

# Draw portfolio losses from the copula-based sampler

draws = copula_sampler(L_window, M, type=copula_type)

draws = np.asarray(draws, dtype=float).reshape(M,) # safety reshape
sims[:, j] = draws

# 4) Compute Z1 for each simulated path

Z1 = np.empty(M, dtype=float)

for m in range(M):
sim_series = pd.Series(sims[m], index=idx)
Z1[m] = es_backtest_z1(VaR, ES, sim_series)

return Z1
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# Ik

# Compute copula-based rolling VaR/ES for portfolio

print ("Computing, ,copula-based rolling VaR/ES for portfolio...")
print (f"Window,size: ,{WINDOW} days")

print (f"Monte Carlo,simulations: N=1000")

print (f"Confidence levels: {CONFIDENCE}")

print (f"Portfolio_weights: {weights}")

copula_results = copula_portfolio_var_es(
returns_df=log_returns,
tickers=TICKERS,
weights=weights,
W=WINDOW,
N_sim=1000,
confidence=CONFIDENCE

print (f"\nCopula-based rolling forecasts complete")

print (£f"Number of Gaussian VaR forecasts,(alpha=0.05): {copula_results[’gaussian’][’VaR
’]1[0.95] .notna() .sum()}")

print (f"Number of Student-t VaR forecasts(alpha=0.05) : ,{copula_results[’student’] [’VaR
’1[0.95] .notna() .sum() }\n\n")

# 4% [markdown]

# ### c. Backtesting and comparison: univariate vs copula-based approaches

#

# Compare portfolio VaR/ES backtests across univariate methods (part a) and copula-based
approaches (part b). Assess whether exzplicit dependence modeling improves accuracy,
especially in the tails.

# %

# Backtest copula-based VaR using Kupiec POF test

print ("-"*60)

print ("COPULA-BASED, PORTFOLIO, ,VaR BACKTESTING, ,— KUPIEC POF_ TEST")
print ("-"*60)

result = pd.DataFrame(columns = [’Confidence Level’, ’Method’, ’POF_p_value’])
for confidence in CONFIDENCE:

alpha = 1 - confidence

print (£"\n{’-’*60}")

print (f"Confidence Level: {int(confidence*100)3}%")

print (£"{’-’*60}\n")

# Gaussian copula

VaR_gauss = copula_results[’gaussian’] [’VaR’] [confidence]

POF_gauss = kupiec_pof_test(VaR_gauss, L_portfolio, alpha)

chi_square_test (POF_gauss, df=1, method_name=’Portfolio —_Gaussian ,Copula’, test_name=’
POF test’)

# Student-t copula

VaR_t = copula_results[’student’] [’VaR’] [confidence]

POF_t = kupiec_pof_test(VaR_t, L_portfolio, alpha)

chi_square_test(POF_t, df=1, method_name=’Portfolio — Student-t Copula’, test_name=’POF
test’)

# 5%

# Backtest copula-based VaR using Christoffersen independence test

print ("-"*60)

print ("COPULA-BASED, PORTFOLIO, ,VaR BACKTESTING ~,CHRISTOFFERSEN, CONDITIONAL_ COVERAGE_TEST")
print ("-"*60)
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for confidence in CONFIDENCE:
alpha = 1 - confidence
print (£"\n{’-’*60}")
print (f"Confidence Level: {int(confidence*100)}%")
print (£"{’-’*60}\n")

# Gaussian copula

VaR_gauss = copula_results[’gaussian’] [’VaR’] [confidence]

POF_gauss = kupiec_pof_test(VaR_gauss, L_portfolio, alpha)

LR_ind_gauss = christoffersen(VaR_gauss, L_portfolio)

chi_square_test(LR_ind_gauss + POF_gauss, df=2, method_name=’Portfolio ,— Gaussian Copula
’, test_name=’Christoffersen conditional ,coverage test’)

# Student-t copula

VaR_t = copula_results[’student’][’VaR’] [confidence]

POF_t = kupiec_pof_test(VaR_t, L_portfolio, alpha)

LR_ind_t = christoffersen(VaR_t, L_portfolio)

chi_square_test(LR_ind_t + POF_t, df=2, method_name=’Portfolio - ,Student-t Copula’,
test_name=’Christoffersen conditional ,coverage test’)

# 1%

print ("-"*60)

print ("COPULA-BASED, ,PORTFOLIO, ES BACKTESTING,,(Acerbi-Szekely,,Z1, Test)")
print ("-"*60)

asset_returns = log_returns[TICKERS] # full asset returns
portfolio_loss = L_portfolio # align with rolling VaR/ES

for confidence in CONFIDENCE:
alpha = 1 - confidence
print (£"\n{’-’>*60}")
print (f"Confidence Level: {int(confidence*100)}%")
print (£"{’-’*60}\n")

# Align VaR/ES first
VaR_gauss = copula_results[’gaussian’] [’VaR’] [confidence]
ES_gauss = copula_results[’gaussian’] [’ES’] [confidence]

# Gaussian copula ES backtest

Z_1_sim_gauss = monte_carlo_es_backtest_z1l_copula(
VaR_gauss, ES_gauss, portfolio_loss, asset_returns, window=WINDOW,
copula_type=’gaussian’, M=1000

)

real_Z1_gauss = es_backtest_zl(VaR_gauss, ES_gauss, portfolio_loss)

p_gauss = (np.sum(Z_1_sim_gauss >= real_Z1_gauss) + 1) / (len(Z_1_sim_gauss) + 1)

print (f"The test,statistic_and, p value for Portfolio - ,Gaussian Copula are : "
f"Z1_stat{real_Z1_gauss},_ p_value {p_gauss}")
if p_gauss < 0.05:
print ("Reject_the null hypothesis_at_ 5% significance level for Portfolio — Gaussian
Copula.\n")
else:
print ("Fail to reject, the null hypothesis at, 5%usignificance level for Portfolio -,
Gaussian Copula.\n")

# Student-t copula ES backtest
VaR_student = copula_results[’student’][’VaR’] [confidence]

ES_student = copula_results[’student’][’ES’] [confidence]

Z_1_sim_student = monte_carlo_es_backtest_z1_copula(
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VaR_student, ES_student, portfolio_loss, asset_returns, window=WINDOW,
copula_type=’student’, M=1000

)

real_Z1_student = es_backtest_zl(VaR_student, ES_student, portfolio_loss)

p_student = (np.sum(Z_1_sim_student >= real_Z1_student) + 1) / (len(Z_1_sim_student) +
1)

print (f"The_ teststatistic_and pvalue for Portfolio - Student Copula are :. "
f"Z1_stat{real_Z1_student}, p_value {p_studentl}")
if p_student < 0.05:
print ("Reject the null hypothesis at 5% significance level for Portfolio —_Student,
Copula.\n")
else:
print ("Fail_ to reject the null hypothesis at 5% significance level for Portfolio -
Student Copula.\n")

# Ik

def compute_backtest_statistics(VaR_forecasts,
ES_forecasts,
actual_losses,
alpha,
sampler_fn,
window,
M=1000) :

uuuuCompute VaR jand ES backtest statistics fora given method.

nun

# VaR-based statistics ——-———-——-——-

valid_idx = VaR_forecasts.notna() & actual_losses.notna()
VaR_clean = VaR_forecasts[valid_idx]

L_clean = actual_losses[valid_idx]

violations = (L_clean > VaR_clean).astype(int)

n_violations = violations.sum()

n_total = len(violations)

violation_rate = n_violations / n_total if n_total > O else np.nan
expected_violations = alpha * n_total

# Kupiec POF
POF = kupiec_pof_test(VaR_clean, L_clean, alpha)

# Christoffersen independence component
LR_ind = christoffersen(VaR_clean, L_clean)

# - NEW: p-values ——-———-—--
POF_p_value = chi_square_test(
POF, df=1,
method_name=’Portfolio’,
test_name=’P0F_ test’

Christoffersen_p_value = chi_square_test(
LR_ind + POF, df=2,
method_name=’Portfolio’,
test_name=’Christoffersen test’

# ES-based statistics —————————-
Z1_simulated = monte_carlo_es_backtest_z1(
VaR_forecasts, ES_forecasts, actual_losses,
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sampler_fn, window=window, M=M
)
Z1_real = es_backtest_zl1(VaR_forecasts, ES_forecasts, actual_losses)
Z1_p_value = (Z1_simulated >= Z1l_real).sum() / len(Z1_simulated)

return {
"n_violations": n_violations,
"n_total": n_total,
"violation_rate": violation_rate,
"expected_rate": alpha,
"expected_violations": expected_violationms,
"POF_statistic": POF,
"POF_p_value": POF_p_value, # NEW
"Christoffersen_statistic": LR_ind + POF,
"Christoffersen_p_value": Christoffersen_p_value, # NEW
"Z1_stat": Z1_real,
"Z1_p_value": Z1_p_value,

# A

print ("-"*60)

print ("COMPREHENSIVE, COMPARISON: {UNIVARIATE, vs_ ,COPULA-BASED, APPROACHES")
print ("-"*60)

comparison_results = []

# Full asset returns and portfolio loss (for copula ES MC)
asset_returns = log_returns[TICKERS]
portfolio_loss = L_portfolio.sort_index()

# Choose a sampler for the VaR null for copulas (only used instide
compute_backtest_statistics for ES,

# but we will override ES, so this can be anything reasonable, e.g. historical)

sampler_for_VaR = sampler[’historical’]

for confidence in CONFIDENCE:
alpha = 1 - confidence

# - Univariate methods --—-—-—————-

for method in METHODS:
VaR_forecast = portfolio_rolling results[method] [’VaR’] [confidence]
ES_forecast = portfolio_rolling_results[method] [’ES’] [confidence]

stats = compute_backtest_statistics(
VaR_forecast,
ES_forecast,
portfolio_loss,
alpha,
sampler_fn=sampler [method],
window=WINDOW,
M=1000

comparison_results.append ({
"Confidence": f"{int(confidence*x100)1}%",
"Approach": "Univariate",
"Method": method,
"Violations": stats["n_violations"],
"Total": stats["n_total"],
"Violation, Rate": f"{stats[’violation_rate’]:.4f}",
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"Expected Rate": f"{stats[’expected_rate’]:.4f}",

"POF Stat": f"{stats[’POF_statistic’]:.4f}",

"POF_p-value": f"{stats[’POF_p_value’]:.4f}",

"Christoffersen Stat": f"{stats[’Christoffersen_statistic’]:.4f}",
"Christoffersen p-value": f"{stats[’Christoffersen_p_value’]:.4f}",
"Z1 Stat": f"{stats[’Z1_stat’]:.4f}",

"Z1_p-value": f"{stats[’Z1i_p_value’]:.4f}",

# o Copula-based methods ---------—-

for copula_type in ["gaussian", "student"]:
VaR_forecast = copula_results[copula_type] [’VaR’] [confidence]
ES_forecast = copula_results[copula_type] [’ES’] [confidence]

# 1) VaR-based statistics from the gemeric function
stats = compute_backtest_statistics(

VaR_forecast,

ES_forecast,

portfolio_loss,

alpha,

sampler_fn=sampler_for_VaR, # only used for ES in generic MC, but we’ll override
ES

window=WINDOW,

M=1000

# 2) Override ES statistics using copula-based Monte Carlo
Z1_sim = monte_carlo_es_backtest_zl_copula(

VaR_forecast,

ES_forecast,

portfolio_loss,

asset_returns,

window=WINDOW,

copula_type=copula_type,

M=1000
)
Z1_real = es_backtest_zl(VaR_forecast, ES_forecast, portfolio_loss)
Z1_p_value = (Z1_sim >= Z1_real).sum() / len(Z1l_sim)

stats["Z1_stat"] = Z1_real
stats["Z1_p_value"] = Z1_p_value

copula_name = "Gaussian Copula" if copula_type == "gaussian" else "Student-t,Copula"

comparison_results.append ({
"Confidence": f"{int(confidencex*x100)}%",
"Approach": "Copula",
"Method": copula_name,
"Violations": stats["n_violations"],
"Total": stats["n_total"],
"Violation Rate": f"{stats[’violation_rate’]:.4f}",
"Expected Rate": f"{stats[’expected_rate’]:.4f}",
"POF_Stat": f"{stats[’POF_statistic’]:.4f}",
"POF_p-value": f"{stats[’POF_p_value’]:.4f}",
"Christoffersen, Stat": f"{stats[’Christoffersen_statistic’]:.4f}",
"Christoffersen p-value": f"{stats[’Christoffersen_p_value’]:.4f}",
"Z1 Stat": f"{stats[’Z1_stat’]:.4f}",
"Ziup-value": f"{stats[’Z1i_p_value’]:.4f}",
1))
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# Create DataFrame for better visualization
comparison_df = pd.DataFrame(comparison_results)

print ("\nSUMMARY TABLE:")
display(comparison_df)

# Save to CSV
comparison_df.to_csv(OUT_DIR / ’portfolio_var_es_comparison.csv’, index=False)
print (f"\nComparison, table saved to ,{0UT_DIR,/ ,’portfolio_var_es_comparison.csv’}")

# %
# Visualize violation rates comparison
fig, axes = plt.subplots(l, 2, figsize=(16, 6))

for i, confidence in enumerate (CONFIDENCE) :
ax = axes[i]
alpha = 1 - confidence

# Filter data for this confidence level
data = comparison_df [comparison_df [’Confidence’] == f"{int(confidence*100)}%"].copy()

# Convert violation rate to float for plotting
data[’Violation Rate Numeric’] = datal[’Violation Rate’].astype(float)
data[’Method_Full’] = datal[’Approach’] + ’_-,’ + data[’Method’]

# Create bar plot
x_pos = np.arange(len(data))
bars = ax.bar(x_pos, data[’Violation, Rate Numeric’], alpha=0.7, edgecolor=’black’)

# Color bars by approach
colors = [’steelblue’ if approach == ’Univariate’ else ’coral’
for approach in datal[’Approach’]]
for bar, color in zip(bars, colors):
bar.set_color(color)

# Add expected Tate line
ax.axhline(y=alpha, color=’red’, linestyle=’--’, linewidth=2, label=f’Expected Rate({
alpha:.2f})?)

# Formatting

ax.set_xticks(x_pos)

ax.set_xticklabels(data[’Method’], rotation=45, ha=’right’)

ax.set_ylabel(’Violation Rate’, fontsize=12)

ax.set_title(f’VaR_ Violation Rates_ - {int(confidence*100)}% Confidence’, fontsize=14,
fontweight="bold’)

ax.grid(True, alpha=0.3, axis=’y’)

ax.legend()

# Add value labels on bars
for j, (idx, row) in enumerate(data.iterrows()):
height = row[’Violation Rate Numeric’]
ax.text(j, height + 0.002, f"{height:.3f}", ha=’center’, va=’bottom’, fontsize=9)

# Add legend for approaches

legend_elements = [
Patch(facecolor=’steelblue’, edgecolor=’black’, label=’Univariate Methods’),
Patch(facecolor=’coral’, edgecolor=’black’, label=’Copula-Based Methods’)

]

fig.legend(handles=1egend_e1ements, loc=’upper center’, ncol=2, frameon=True, bbox_to_anchor

=(0.5, 0.98))
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plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.savefig(OUT_DIR / ’portfolio_var_violation_rates.png’)
plt.show()

# %% [markdown]
# At the 95) confidence level, both Gaussian and Student-*t* copulas ezhibit violation rates
that exceed the theoretical benchmark, performing similarly to or slightly worse than
several univariate methods. At the 997 level, copula models show a modest tmprovement
relative to some univariate approaches; however, their wviolation rates remain above the
expected threshold, indicating persistent underestimation of tail risk.
#

# In contrast, untivariate models that account for time-varying volatility, in particular the
Filtered Historical Stimulation (FHS) and parametric GARCH, achieve violation rates
closest to the theoretical expectations across both confidence levels. This suggests

that, for our particular portfolio and the period under study, modeling temporal
dependence and volatility clustering is more impactful for accurate risk measurement
than modeling cross-sectional dependence alone.

# I

def plot_portfolio_var_methods_grid(L_portfolio,
portfolio_rolling_results,
copula_results=None,
methods_univariate=None,
methods_copula=None,
confidences=(0.95, 0.99)):

nnn
uuuuPlotyportfoliolossesvs VaR for ,each method in a grid:
uuuuone row per,method, one ,column per ,confidence level.

uuuuParameters

uuuuL_portfolioy,:pd.Series

uuuuuuuuPortfolio losses time series(e.g. , L_portfolio = -portfolio_returns).
uuuuportfolio_rolling resultsy:dict-like

uuuuuuuuOutput jof rolling forecast for the portfolio, indexed as:
uuuuuuuuportfolio_rolling results[method] [’VaR’] [confidence].
uuuucopula_results:dict, optional

uuuuuuuuOutput of ,copula_portfolio_var_es, with keys,’gaussian’ and ’student’,
Luuuuuuu@ccessed,ascopula_results [copula_type] [’VaR’] [confidence] .
uuuumethods_univariatey:listof str, optional
uuuuuuuuListyof univariate method names,,toyinclude, e.g.

uuuuuuuu ["historical", "fhs", ,"gaussian", "student", "parametric"].
uuuumethods_copulay,:list0f str, optional

LuuuuuuuListof ,copula method, keys, subset of ,["gaussian", "student"].
uuuuconfidencesy: jiterable of float
uuuuuuuuConfidencelevels to plot(e.g.,,(0.95,,0.99)).

nnn
o}

confidences = list(confidences)
n_conf = len(confidences)

if methods_univariate is None:
methods_univariate = list(portfolio_rolling_results.keys())

if (copula_results is not None) and (methods_copula is None):
methods_copula = ["gaussian", "student"]

elif copula_results is None:
methods_copula = []

# Build list of (source_type, key, label)
# source_type: ’univariate’ or ’copula’
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method_list = []

# Univariate methods
for method in methods_univariate:
method_list.append(("univariate", method, f"Univariate —_{method}"))

# Copula methods

for cop in methods_copula:
label = "Gaussian Copula" if cop == "gaussian" else "Student-t, Copula"
method_list.append(("copula", cop, label))

n_methods = len(method_list)

if n_methods ==
print ("No methods provided to plot.")
return

fig, axes = plt.subplots(
n_methods, n_conf,
figsize=(6 * n_conf, 3 * n_methods),
sharex=True

# Ensure azes is 2D
if n_methods == 1 and n_conf ==
axes = np.array([[axes]])
elif n_methods ==
axes = axes.reshape(l, -1)
elif n_conf ==
axes = axes.reshape(-1, 1)

for i, (src_type, key, base_label) in enumerate(method_list):
for j, conf in enumerate(confidences):
ax = axes[i, j]

# Get VaR series for this method & confidence
if src_type == "univariate":

VaR_series = portfolio_rolling_results[key] ["VaR"] [conf].dropna()

else: # copula
VaR_series = copula_results[key] ["VaR"] [conf].dropna()

# Align portfolio loss with VaR series
common_idx = L_portfolio.index.intersection(VaR_series.index)
L_aligned = L_portfolio.loc[common_idx]
V_aligned = VaR_series.loc[common_idx]

# Plot full loss sertes (context)

ax.plot(
L_portfolio.index, L_portfolio.values,
color="black", alpha=0.35, linewidth=0.9,
label="Portfolio Loss"

)

# Plot VaR

ax.plot(
V_aligned.index, V_aligned.values,
linewidth=1.6,
label=f"{base_label} VaR_({int (conf*100)}%)"

)

# Violations
violations = L_aligned > V_aligned
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ax.scatter(
L_aligned[violations].index,
L_aligned[violations].values,
color="red", marker="x", s=50,
label="Violations"

# Labels / titles

if § ==
ax.set_ylabel("Loss,/ VaR", fontsize=11)

ax.set_title(
f"{base_label} - {int (conf*100)}%",
fontsize=13, fontweight="bold"

# Grid & legend
ax.grid(alpha=0.3)
ax.legend(fontsize=8, loc="upper left")

# Date formatting: only bottom row shows tick labels
if i == n_methods - 1:
ax.xaxis.set_major_locator (mdates.MonthLocator (interval=3))
ax.xaxis.set_major_formatter(mdates.DateFormatter (°%Y-%m’))
plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)
else:
ax.set_xticklabels([])

fig.suptitle(
"Portfolio Rolling, VaR, ,vs Realized, Losses\nMethods x Confidence Levels",
fontsize=16, fontweight="bold",
y=0.995 # move title closer to the top
)
plt.tight_layout(pad=1.0) # reduce padding between title and azes
fig.subplots_adjust(top=0.95) # key line: moves plots upward
plt.savefig(OUT_DIR / ’portfolio_var_portfolio_methods.png’)
plt.show()

# 5%
methods_univariate = ["historical", "fhs", "gaussian", "student", "parametric"]
methods_copula = ["gaussian", "student"] # keys in copula_results

plot_portfolio_var_methods_grid(
L_portfolio=L_portfolio,
portfolio_rolling results=portfolio_rolling_ results,
copula_results=copula_results,
methods_univariate=methods_univariate,
methods_copula=methods_copula,
confidences=(0.95, 0.99)

# 4% [markdown]

# The figure presents the realized portfolio losses alongside the Value-at-Risk (VaR)
estimates produced by different methods, at both **95]** and **99)** confidence levels.
Red crosses indicate violations instances where the realized loss exceeds the forecasted

VaR. These plots help assess the temporal behavior, responsiveness, and adequacy of
each risk model.

#

# A well-calibrated VaR model should:

#

# - Adjust dynamically to changing market volatility,

# - Anticipate periods of elevated risk,
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# - Produce violations at a frequency constistent with the chosen confidence level (5] or 1))

# - Avoid large clusters of violations during stress periods.

#

# A visual inspection reveals that copula-based approaches do not systematically outperform
univartiate models such as FHS or GARCH-type specifications. Although copulas provide a
more flexible framework to model cross-sectional dependence, their VaR curves often
rematin too smooth and fail to adjust rapidly during periods of heightened volatility. As

a result, copula-based VaR estimates are frequently exceeded during market stress,
leading to a substantial number of wviolations.

#

# In contrast, untvariate methods that explicitly incorporate time-varying volatility,
particularly FHS, tend to align more closely with the observed loss dynamics. These
models react more promptly to volatility bursts and adjust their risk estimates
accordingly, which explains their lower violation frequencies. This behavior is
especially visible during the sharp increase in losses towards the end of the sample:
while FHS-based VaR rapidly escalates to reflect the changing Tisk environment, copula-
based VaR remains comparatively muted and is repeatedly breached.

# 5%

def plot_portfolio_es_methods_grid(L_portfolio,
portfolio_rolling_results,
copula_results=None,
methods_univariate=None,
methods_copula=None,
confidences=(0.95, 0.99)):

nnn
uuuuPlotportfoliolosses  vs ES for ,each method,in a ,grid:
uuuuone row per method, one ,column, per ,confidence level.

uuuuParameters

uuuuL_portfolioy,:pd.Series

uuuuuuuuPortfolio losses time series (e.g. , L_portfolio = -portfolio_returns).
uuuuportfolio_rolling_resultsy:dict-like

uuuuuuuuOutput0of jrolling_forecast for the portfolio, indexed as:
uuuuuuuuportfolio_rolling results[method] [’ES’] [confidence] .
uuuucopula_results:dict, optional

uuuuuuuuOutput of jcopula_portfolio_var_es, with keys;,’gaussian’ and,,’student’,
Luuuuuuu@ccessedascopula_results [copula_typel] [’ES’] [confidence] .
uuuumethods_univariatey:listof str, optional
vuuuuuuuLlistyof univariate method names ,toyinclude, e.g.

uuuuuuuu ["historical", "fhs",,"gaussian", "student", "parametric"].
uuuumethods_copulay,:list0f str, optional

LuuuuuuuListof ,copula method, keys, subset of ,["gaussian", ,"student"].
uuuuconfidencesy:jiterable of float
uuuuuuuuConfidence levels to ploty,(e.g.,,(0.95,,0.99)).

nun
I

confidences = list(confidences)
n_conf = len(confidences)

if methods_univariate is None:
methods_univariate = list(portfolio_rolling_results.keys())

if (copula_results is not None) and (methods_copula is None):
methods_copula = ["gaussian", "student"]
elif copula_results is None:

methods_copula = []

# Build list of (source_type, key, label)
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method_list = []

# Univariate methods
for method in methods_univariate:
method_list.append(("univariate", method, f"Univariate —_{method}"))

# Copula methods

for cop in methods_copula:
label = "Gaussian Copula" if cop == "gaussian" else "Student-t, Copula"
method_list.append(("copula", cop, label))

n_methods = len(method_list)

if n_methods ==
print ("No methods provided to plot.")
return

fig, axes = plt.subplots(
n_methods, n_conf,
figsize=(6 * n_conf, 3 * n_methods),
sharex=True

# Ensure azes is 2D
if n_methods == 1 and n_conf ==
axes = np.array([[axes]])
elif n_methods ==
axes = axes.reshape(l, -1)
elif n_conf ==
axes = axes.reshape(-1, 1)

for i, (src_type, key, base_label) in enumerate(method_list):
for j, conf in enumerate(confidences):
ax = axes[i, j]

# Get ES series for this method & confidence
if src_type == "univariate":

ES_series = portfolio_rolling_results[key] ["ES"] [conf].dropna()
else: # copula

ES_series = copula_results[key] ["ES"] [conf].dropna()

# Align portfolio loss with ES series

common_idx = L_portfolio.index.intersection(ES_series.index)
L_aligned = L_portfolio.loc[common_idx]

ES_aligned = ES_series.loc[common_idx]

# Plot full loss sertes (context)

ax.plot(
L_portfolio.index, L_portfolio.values,
color="black", alpha=0.35, linewidth=0.9,
label="Portfolio Loss"

)

# Plot ES

ax.plot(
ES_aligned.index, ES_aligned.values,
linewidth=1.6, linestyle="--",
label=f"{base_labell} ES ({int(conf*100)}%)"

)

# Violations: loss > ES
violations = L_aligned > ES_aligned
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ax.scatter(
L_aligned[violations].index,
L_aligned[violations].values,
color="red", marker="x", s=50,
label="Loss >_ES"

# Labels / titles

if § ==
ax.set_ylabel("Loss,/_ES", fontsize=11)

ax.set_title(
f"{base_label} - {int (conf*100)}%",
fontsize=13, fontweight="bold"

# Grid & legend
ax.grid(alpha=0.3)
ax.legend(fontsize=8, loc="upper left")

# Date formatting: only bottom row shows tick labels
if i == n_methods - 1:
ax.xaxis.set_major_locator (mdates.MonthLocator (interval=3))
ax.xaxis.set_major_formatter(mdates.DateFormatter (°%Y-%m’))
plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)
else:
ax.set_xticklabels([])

fig.suptitle(
"Portfolio Rolling ES vs Realized Losses\nMethods_ x Confidence Levels",
fontsize=16, fontweight="bold",
y=0.995 # move title closer to the top

)

plt.tight_layout (pad=1.0)

fig.subplots_adjust(top=0.95)

plt.savefig(OUT_DIR / ’portfolio_es_portfolio_methods.png’)

plt.show()
# 5%
methods_univariate = ["historical", "fhs", "gaussian", "student", "parametric"]
methods_copula = ["gaussian", "student"] # keys in copula_results

plot_portfolio_es_methods_grid(
L_portfolio=L_portfolio,
portfolio_rolling results=portfolio_rolling_ results,
copula_results=copula_results,
methods_univariate=methods_univariate,
methods_copula=methods_copula,
confidences=(0.95, 0.99)

# 4% [markdown]
# Expected Shortfall (ES) measures the *average loss* in the tail beyond the VaR threshold.
A well-calibrated ES model should therefore:

# - **Consistently exceed realized losses** during normal periods, since ES is a *worst-case
conditional loss*,
# - **Increase sharply during market stress**, capturing escalating downside risk,
# - **Avotd repeated exceedances**losses should only rarely be higher than ES,
# - Reflect changes in **both volatility and dependence** across assets, since ES is highly
sensitive to tail co-movements.
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# In short, ES should form a **protective upper boundary** for losses in extreme conditions.
If losses frequently cross above ES, the model is underestimating tail risk.

#

# These plots above compare realized portfolio losses with Ezpected Shortfall (ES) forecasts
from different univariate and copula-based models at **95)*% and **99/** confidence
levels. Red crosses indicate instances where losses exceed the ES estimate.

#

# Similar to the VaR analysis, the copula-based approaches do not demonstrate a clear
performance advantage over univariate methods. Although ES t¢s a coherent risk measure
and theoretically more sensitive to tail events, the copula-based ES estimates Temain
relatively stable throughout the sample and fatl to escalate during periods of
heightened market stress. Consequently, several realized losses exceed the copula-based
ES thresholds, indicating that these models tend to underestimate tail risk.

#

# By contrast, univariate models that incorporate time-varying volatility, particularly the
Filtered Historical Simulation (FHS) and, to a lesser extent, parametric GARCH-type,
provide more reactive ES estimates. These methods adjust rapidly to wvolatility bursts,
producing higher ES values when market conditions deteriorate. This dynamic behavior
results in fewer ES breaches, especially in the latter part of the sample, where the
portfolio experiences the most extreme losses. The responsiveness of FHS to evolving
volatility patterns highlights the importance of modeling temporal dependence and
volatility clustering when forecasting downstide risk.

# 4% [markdown]

# ## Conclusion

#

# The objective of this analysis was to assess whether dependence modeling improves
portfolio risk estimation. While copula-based approaches explicitly capture the cross-—
sectional dependence structure between assets, the empirical results do not provide
clear evidence of superior performance compared to univariate models.

#

# An explanation for these findings lies in the characteristics of the underlying portfolio.

The three assets considered do not exhibit pronounced dependence, which limits the
potential gains from employing copula-based models. In such a context, explicitly
modeling cross-sectional dependence offers little improvement. Moreover, copulas do not
account for wolatility clustering or sudden volatility bursts <1f we give them simple
Gaussian or Student-$t$ marginals, unlike FHS and GARCH. Since extreme losses during the

sample period appear to be primarily driven by wvolatility dynamics rather than
dependence structures, correctly modeling time-varying volatility proves more important
than capturing marginal dependence. Consequently, the relative underperformance of
copula—based methods is consistent with the underlying data-generating process and the
nature of the portfolio risk.

#

# Therefore, we cannot conclude that dependence modeling via copulas systematically improves

the results. Copula-based methods do not outperform well-specified univariate models
such as FHS, and their benefits become visible only at extreme confidence levels without

consistently translating into better backtesting outcomes. While copulas generally
perform better than some simpler univariate approaches, this incremental improvement
remains insuffictent to claim superiority over methods that explicitly model wvolatility
dynamics. As a result, the evidence does not support the claim that copulas provide
supertor VaR or ES estimates in this setting.
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