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1 Theoretical Background

1.1 Bell states

Let |B00⟩AB = 1√
2

(
|00⟩+ |11⟩

)
We will prove that:

|B00⟩⊗n =
1

2
n
2

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

Notation: |B00⟩⊗n = |B00⟩ ⊗ |B00⟩ ⊗ · · · ⊗ |B00⟩︸ ︷︷ ︸
n times

Let’s prove it by induction:
Base case:
n = 1:

|B00⟩⊗1
AB = |B00⟩AB

=
1

2
1
2

(
|00⟩AB + |11⟩AB

)
n = 2:

|B00⟩⊗2 = |B00⟩A1B1 ⊗ |B00⟩A2B2

=
1

2

(
|00⟩A1B1

+ |11⟩A1B1

)
⊗
(
|00⟩A2B2

+ |11⟩A2B2

)
=

1

2

(
|00⟩A1A2 ⊗ |00⟩B1B2 + |01⟩A1A2 ⊗ |01⟩B1B2 + |10⟩A1A2 ⊗ |10⟩B1B2 + |11⟩A1A2 ⊗ |11⟩B1B2

)
The property holds for n = 1 and n = 2.

Inductive step:
Suppose it holds for n, let’s check for n+ 1:

|B00⟩⊗n+1 = |B00⟩⊗n ⊗ |B00⟩

=
1

2
n
2

∑
x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn ⊗ 1

2
1
2

(
|00⟩An+1Bn+1 + |11⟩An+1Bn+1

)
=

1

2
n+1
2

[( ∑
x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn

)
⊗ |00⟩An+1Bn+1 +

( ∑
x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn

)
⊗ |11⟩An+1Bn+1

]
=

1

2
n+1
2

∑
x∈{0,1}n

|x0⟩A1...An+1
⊗ |x0⟩B1...Bn+1

+ |x1⟩A1...An+1
⊗ |x1⟩B1...Bn+1

=
1

2
n+1
2

∑
x∈{0,1}n+1

|x⟩A1...An+1
⊗ |x⟩B1...Bn+1

The last equality is true because to obtain all the qubits strings of length n+1, we take all those of length n and
either add to them a 0 or a 1.

1.2 An interesting quantum circuit

1.2.1 Probability of measuring |0⟩

a) The overall state after the first Hadamard gate is:

|ψ1⟩ = H|0⟩ ⊗ |B00⟩⊗n

=
1

2
1
2

(
|0⟩+ |1⟩

)
⊗ 1

2
n
2

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

1



b) The overall state after the controlled unitary is:

|ψ2⟩ =
1

2
n+1
2

(
|0⟩ ⊗

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

)
+

1

2
n+1
2

(
|1⟩ ⊗ UA1···An

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

)
=

1

2
n+1
2

(
|0⟩ ⊗

∑
x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn

)
+

1

2
n+1
2

(
|1⟩ ⊗

∑
x∈{0,1}n

U |x⟩A1...An ⊗ |x⟩B1...Bn

)
c) The overall state after the second Hadamard gate is:

|ψ3⟩ =
1

2
n+1
2

( 1

2
1
2

(
|0⟩+ |1⟩

)
⊗

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

)
+

1

2
n+1
2

( 1

2
1
2

(
|0⟩ − |1⟩

)
⊗

∑
x∈{0,1}n

U |x⟩A1...An
⊗ |x⟩B1...Bn

)
=

1

2
n+2
2

(
|0⟩ ⊗

∑
x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn + U |x⟩A1...An ⊗ |x⟩B1...Bn

)
+

1

2
n+2
2

(
|1⟩ ⊗

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

− U |x⟩A1...An
⊗ |x⟩B1...Bn

)

d) The probability of getting |0⟩ in the first qubit is:

Pr(0) =

(
1

2
n+2
2

)2( ∑
x∈{0,1}n

⟨x|A1...An
⊗ ⟨x|B1···Bn

+ ⟨x|A1...An
U† ⊗ ⟨x|B1···Bn

)

·
( ∑

x∈{0,1}n

|x⟩A1···An
⊗ |x⟩B1···Bn

+ U |x⟩A1...An
⊗ |x⟩B1···Bn

)

=
1

2n+2

( ∑
x∈{0,1}n

⟨x|A1···An
⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

|x⟩A1···An
⊗ |x⟩B1···Bn

)

+
1

2n+2

( ∑
x∈{0,1}n

⟨x|A1···An
⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

U |x⟩A1···An
⊗ |x⟩B1···Bn

)

+
1

2n+2

( ∑
x∈{0,1}n

⟨x|A1···An
U† ⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

|x⟩A1···An
⊗ |x⟩B1···Bn

)

+
1

2n+2

( ∑
x∈{0,1}n

⟨x|A1···An
U† ⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

U |x⟩A1···An
⊗ |x⟩B1···Bn

)
=

1

2n+2
· 2n +

1

2n+2
· 2n +

1

2n+2
· Tr(U) +

1

2n+2
· Tr(U†) (1)

=
1

2
+

1

2n+2

(
Tr(U) + Tr(U†)

)
=

1

2
+

1

22
1

2n
2ℜ(Tr(U)) (2)

=
1

2
+

1

2

1

2n
ℜ(Tr(U))

We get (1) because in the first and the second term, we will have a nonzero element if and only if the x’s are the
same. Because when they are not the same, they are orthogonal to each other and the inner product gives 0. On
the third and forth term, same thing but we have here the definition of the trace of a matrix that appears, which
is:

Tr(U) =
∑

x∈{0,1}n

⟨x|U |x⟩

We get (2) because Tr(U†) is the complex conjugate of Tr(U). Therefore, if we add them up, the imaginary part
cancels off and we get 2ℜ(Tr(U)).
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1.2.2 How to compute 1
2nℜ(Tr(U)) using the circuit

As we’ve found an expression of the probability of measuring |0⟩ in terms of 1
2nℜ(Tr(U)), we can use it! How?

Simply by simulating many times the experiment, noting each time the measurement is found. At the end, when
we have enough simulations we compute [number of times we’ve measured |0⟩]/[total number of measurements].
Say that it’s equal to :

Pr(0) =
1

2
+

1

2

1

2n
ℜ(Tr(U))

This is equivalent to :

1

2n
ℜ(Tr(U)) = 2Pr(0)− 1

1.2.3 Check that S =

(
1 0
0 −i

)
is a valid quantum operation

We first compute S†. Then we check the identities SS† = S′†S = I.

S† =

(
1 0
0 i

)

SS† =

(
1 0
0 −i

)(
1 0
0 i

)
=

(
1 0
0 1

)

S†S =

(
1 0
0 i

)(
1 0
0 −i

)
=

(
1 0
0 1

)

1.2.4 How to compute 1
2nℑ(Tr(U)) using the new circuit

The new circuit is such that after the first Hadamard gate, and before the controlled-unitary, we apply S to the
first qubit.
The overall state after the first Hadamard gate stays the same as for the first circuit:

|ψ1⟩ = H|0⟩ ⊗ |B00⟩⊗n

=
1

2
1
2

(
|0⟩+ |1⟩

)
⊗ 1

2
n
2

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

After going through S we have as overall state:

|ψ1⟩ = S
1

2
1
2

(
|0⟩+ |1⟩

)
⊗ 1

2
n
2

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

=
1

2
1
2

(
|0⟩ − i|1⟩

)
⊗ 1

2
n
2

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

The overall state after the controlled unitary is:

|ψ2⟩ =
1

2
n+1
2

|0⟩ ⊗
∑

x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn

− i

|1⟩ ⊗
∑

x∈{0,1}n

UA1···An |x⟩A1...An ⊗ |x⟩B1...Bn



3



The overall state after the second Hadamard gate is:

|ψ3⟩ =
1

2
n+1
2

 1

2
1
2

(|0⟩+ |1⟩)⊗
∑

x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

− 1

2
n+1
2

i

 1

2
1
2

((|0⟩ − |1⟩))⊗
∑

x∈{0,1}n

U |x⟩A1...An
⊗ |x⟩B1...Bn


=

1

2
n+2
2

(
|0⟩ ⊗

∑
x∈{0,1}n

|x⟩A1...An ⊗ |x⟩B1...Bn − iU |x⟩A1...An ⊗ |x⟩B1...Bn

)
+

1

2
n+2
2

(
|1⟩ ⊗

∑
x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1...Bn

+ iU |x⟩A1...An
⊗ |x⟩B1...Bn

)

Let’s now compute the probability to get |0⟩ in the first qubit:

Pr(0) =

(
1

2
n+2
2

)2( ∑
x∈{0,1}n

⟨x|A1...An
⊗ ⟨x|B1···Bn

+ i⟨x|A1...An
U† ⊗ ⟨x|B1···Bn

)

·
( ∑

x∈{0,1}n

|x⟩A1...An
⊗ |x⟩B1···Bn

− iU |x⟩A1...An
⊗ |x⟩B1···Bn

)

=
1

2n+2

( ∑
x∈{0,1}n

⟨x|A1···An
⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

|x⟩A1···An
⊗ |x⟩B1···Bn

)

+
1

2n+2

( ∑
x∈{0,1}n

⟨x|A1···An
⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

−iU |x⟩A1···An
⊗ |x⟩B1···Bn

)

+
1

2n+2

( ∑
x∈{0,1}n

i⟨x|A1···An
U† ⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

|x⟩A1···An
⊗ |x⟩B1···Bn

)

+
1

2n+2

( ∑
x∈{0,1}n

i⟨x|A1···AnU
† ⊗ ⟨x|B1···Bn

)( ∑
x∈{0,1}n

−iU |x⟩A1···An ⊗ |x⟩B1···Bn

)
=

1

2n+2
· 2n +

1

2n+2
· 2n − i

2n+2
· Tr(U) +

i

2n+2
· Tr(U†)

=
1

2
− i

2n+2

(
Tr(U)− Tr(U†)

)
=

1

2
+

1

22
1

2n
2ℑ(Tr(U))

=
1

2
+

1

2

1

2n
ℑ(Tr(U))

Now that we have found Pr(0) in terms of ℑ(Tr(U)), we can proceed as we said for ℜ(Tr(U)) : simulate many
times the experiment, noting each time the measurement found. At the end, when we have enough simulations we
do compute [number of times we’ve measured |0⟩]/[total number of measurements] say that it’s equal to :

Pr(0) =
1

2
+

1

2

1

2n
ℑ(Tr(U))

This is equivalent to :

1

2n
ℑ(Tr(U)) = 2Pr(0)− 1

1.2.5 How many operations does a naive classical trace computation need to do to compute the
trace of a unitary action on n qubits ?

A classical trace computation do the addition of all the diagonal elements of the matrix. There are 2n diagonal
elements in the case of a unitary action on n qubits. So the computation will take 2n-1 addition operation. Therefore,
the naive computation of the trace of a unitary action on n qubits is O(2n).
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2 Practical Implementation

We import useful libraries:

2.3 A random unitary and a quantum device

2.3.1 Random unitary generation

We generate a random unitary circuit over n = 5 qubits with depth = 3:

2.3.2 Trace

We compute the trace of this unitary classically:

2.3.3 Trace estimation circuit

We create and run a trace estimation circuit on a quantum simulator. We compare the trace estimate from the
quantum circuit and the classical trace computation:

5
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2.4 A mystery

2.4.1 Using the trace estimation circuit to estimate an angle θ

We can use Euler identity that states that for a matrix A :

eiθA = cos(θ)I + i sin(θ)A

We can write our matrix U as:

U = eiθ(X⊗X) = cos(θ)I4×4 + i sin(θ)(X ⊗X)

So using this identity, we can simulate the circuit many times and use the expressions of ℜ(Tr(U)) and ℑ(Tr(U))
in terms of the probabilities to find the angle θ.
Using Euler identity :

Tr(U) = 4 cos(θ) + i sin(θ)Tr(X ⊗X)

⇒

{
ℜ(Tr(U)) = 4 cos(θ)− sin(θ)ℑ(Tr(X ⊗X))

ℑ(Tr(U)) = sin(θ)ℜ(Tr(X ⊗X))

8



We compute Tr(X ⊗X):

X ⊗X =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


⇒Tr(X ⊗X) = 0

We found before (with the circuit without the S gate):

1

2n
ℜ(Tr(U)) = (2Pr(0)− 1)

⇒ℜ(Tr(U)) = 2n(2Pr(0)− 1)

Thus we have:

ℜ(Tr(U)) = 4 cos(θ)− sin(θ)ℑ(Tr(X ⊗X))

⇒2n(2Pr(0)− 1) = 4 cos(θ)

⇒θ = arccos

(
2n(2Pr(0)− 1)

4

)
We generate the unitary eiθ(X⊗X) for θ = π

3 :

9



2.4.2 Trace estimation circuit for different values of θ

We generate different values of θ, run the trace estimation circuit for each value and plot the results:
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2.5 Confidence intervals

2.5.1 Expression of X̄ and Sk

We know that X̄ := 1
k

∑k
i=1Xi.

We also know that Xi is 1 if the measurement is |0⟩ and 0 otherwise. Here we run the circuit k times and there are
k0 measurements that give |0⟩, so k0 nonzero terms (more precisely, each equal to 1) in the sum.
Therefore:

X̄ =
1

k
(1 + · · ·+ 1)︸ ︷︷ ︸

k0 times

=
k0
k

= p̂

Let’s try to find the expression of Sk now.
We know that S2

k := 1
k

∑k
i=1(Xi − X̄)2

Let’s use it :

S2
k =

1

k

k∑
i=1

(Xi − X̄)2

=
k − k0
k

p̂2 +
k0
k
(1− p̂)2

= p̂2 − p̂3 + p̂− 2p̂2 + p̂3

= −p̂2 + p̂

= p̂(1− p̂)

We thus end up with Sk =
√
p̂(1− p̂).

Something we could have done is notice that each of the Xi’s follows a Bernoulli distribution of probability of
success (getting |0⟩) p̂. So their sum follows a Binomial distribution of k times an experiment of probability of

success p̂. Thus, the mean of the sum is kp̂ and the mean of 1
k

∑k
i=1Xi would be 1

kkp̂ = p̂. For the variance, it
would be the variance of Bernoulli(k,p̂) multiplied by 1

k which is : S2
k = 1

kkp̂(1− p̂) ⇒ Sk = p̂(1− p̂).

2.5.2 Find a CI for ℜ(Tr(U)) at level 1− α and the p̂ that gives the widest interval

The Confidence Interval (CI) for E[Xi] is p̂± 1.96
√

p̂(1−p̂)
k .

As we know that E[Xi] = Pr(0) = p̂ = 1
2 + 1

2
1
2nℜ(Tr(U)), we can replace E[Xi] by this to find a CI for ℜ(Tr(U)) :

p̂− 1.96

√
p̂(1− p̂)

k
≤ 1

2
+

1

2

1

2n
ℜ(Tr(U)) ≤ p̂+ 1.96

√
p̂(1− p̂)

k

⇔ p̂− 1.96

√
p̂(1− p̂)

k
− 1

2
≤ 1

2

1

2n
ℜ(Tr(U)) ≤ p̂+ 1.96

√
p̂(1− p̂)

k
− 1

2

⇔ 2n+1

(
p̂− 1.96

√
p̂(1− p̂)

k
− 1

2

)
≤ ℜ(Tr(U)) ≤ 2n+1

(
p̂+ 1.96

√
p̂(1− p̂)

k
− 1

2

)

We end up with the following confidence interval for ℜ(Tr(U)):

2n+1

(
p̂− 1

2
± 1.96

√
p̂(1− p̂)

k

)

13



Now, we want to find the p̂ that gives us the widest interval. A way to do that is to minimize the function
corresponding to the size of the interval:

f(p̂) = 2n+1

(
p̂− 1

2
+ 1.96

√
p̂(1− p̂)

k

)
− 2n+1

(
p̂− 1

2
− 1.96

√
p̂(1− p̂)

k

)
= 2n+1

(
3.92

√
p̂(1− p̂)

k

)
Let’s compute the derivative of f in terms of p̂ to find the p̂ that minimizes the function:

df

dp̂
= 1.96

1− 2p̂√
kp̂(1− p̂)

= 0 ⇔ p̂ =
1

2

p̂ = 1
2 gives the widest interval.

2.5.3 Trace estimation circuit with different number of shots and with CI at 95%

For different values of shots num shots, we run the trace estimation circuit num shots times and compute the pre-
viously derived single value estimate of ℜ(Tr(U)) and the CI we got previously at level 95%.
We plot the real value of ℜ(Tr(U)), the single-value estimate of it, and the CI against num shots:
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