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Abstract

We present a systematic exploration of building
an educational large language model (LLM) as-
sistant specialized in STEM tasks. Starting from
Qwen/Qwen-0.6B-Base, we fine-tune the model
on domain-specific data and develop four special-
ized variants: a multiple-choice question answer-
ing (MCQA) model, a quantized MCQA model for
efficient deployment, a retrieval-augmented genera-
tion (RAG) model leveraging external STEM docu-
ments, and a direct preference optimization (DPO)
model for preference-based ranking. The quan-
tized model achieves comparable accuracy to its
full-precision counterpart while reducing inference
cost. While the RAG model does not significantly
outperform the MCQA baseline due to partially
relevant retrieved content, the DPO model reliably
aligns with human preferences, achieving over 81%
accuracy on held-out comparisons. These results
outline a practical path toward effective, efficient,
and preference-aware educational LLMs for STEM
domains.

1 Introduction

LLMs have demonstrated strong performance
across many tasks, but their use in educational con-
texts, especially in STEM, demands fine-tuning, effi-
ciency, and alignment with pedagogical goals. This
work explores how to build a compact educational as-
sistant that answers STEM-related questions with high
reliability and efficiency.
We start from the open-source Qwen/Qwen3-0.
6B-Base model (Qwen, 2025), fine-tune it on STEM
data, and develop four variants: a MCQA model; a
quantized MCQA model for efficient inference; RAG
model accessing an external STEM corpus; and a DPO
model trained on synthetic and human-labeled pref-
erence pairs. This setup enables comparisons across
task-specific strategies and highlights trade-offs in ac-
curacy, efficiency, and preference alignment.
Our results show that RAG provides limited gains over
the base model, quantization maintains performance
at lower cost, and DPO yields reliable preference pre-
dictions. We release our code and models to support
further work on STEM-oriented educational LLMs
(Appendix B).

2 Approach
To develop an effective LLM for STEM subjects, we

first fine-tuned the Qwen/Qwen3-0.6B-Base model us-
ing question/open-answer data, aiming to familiarize
it with domain-specific knowledge. We then train it
for two key tasks: DPO and MCQA. For MCQA, we
also experimented with a LoRA approach (Hu et al.,
2022). In parallel, we ran a second experiment with-
out the initial pre-training step, enabling a comparison
of performance. Additionally, we trained a reasoning
model using the SciQ support text, which, unlike other
models that only output answer choices, provides both
the answer and an explanation for direct assessment of
reasoning.
We experimented with several quantization strate-
gies to reduce the model’s memory footprint. First,
we applied Post-Training Weight Quantization using
bitsandbytes, which compresses float16/bfloat16
weights to 8-bit or 4-bit precision. The 8-bit
quantization uses a block-wise scheme inspired by
LLM.int8 (Dettmers et al., 2022), where weights are
divided into blocks and quantized separately to iso-
late outliers and preserve accuracy. For 4-bit quan-
tization, we used Float4 and NormalFloat4, as intro-
duced in QLoRA (Dettmers et al., 2023), which are
designed to match typical weight distributions. We
also applied 8-bit quantization to both weights and
activations (W8A8) using llmcompressor, combin-
ing SmoothQuant (Xiao et al., 2024), which rescales
activations to limit outliers impact during calibration,
and GPTQ (Frantar et al., 2023) for linear layer quan-
tization. We also tested weight-only 4-bit quantization
(W4A16) with GPTQ. Finally, we experimented with
QLoRA (Dettmers et al., 2023), which enables effi-
cient fine-tuning by quantizing the base model to 4-bit
and training only lightweight LoRA modules, offering
a good trade-off between compression and accuracy.
For the RAG model, we constructed a dedicated cor-
pus based on 28 authoritative STEM textbooks, con-
verted into clean Markdown format, and built an
embedding index using FAISS (Douze et al., 2025)
with the thenlper/gte-small model (Xiao et al.,
2023), chunking the texts into segments of 512 tokens.
During training, we fine-tuned both Qwen/Qwen3-0.
6B-Base and the SFT model with LoRA, retrieving
the top k = 5 most relevant chunks for each query to



augment the generation process, thereby familiarizing
the model with the RAG format (Lee et al., 2025).

3 Experiments

• Data: For the domain knowledge SFT train-
ing, we randomly sampled respectively 50,000
and 100,000 examples from PrimeIntellect/
SYNTHETIC-1-SFT-Data (Mattern et al., 2025b).
We preprocessed the data by extracting question-
answer pairs from the original conversational for-
mat and removing unnecessary columns. The
resulting dataset was then split into training and
evaluation subsets (90%/10%) to enable model
validation during fine-tuning.
Building upon this, we further enhanced the
model by incorporating existing datasets in the
MCQA domain for STEM subjects. Specifically,
we merged the train splits of (D1) a filtered ver-
sion of cais/mmlu restricted to STEM subjects;
(D2) allenai/ai2_arc (Challenge and Easy
subsets); (D3) allenai/sciq, a science-focused
MCQA dataset; and (D4) deepmind/aqua_rat,
which contains math word problems. We stan-
dardized the datasets to ensure consistency, into
a unified structure of a question, four answer
choices, and the correct answer. SciQ’s an-
swers were shuffled to remove positional bias,
and we randomly removed one incorrect an-
swer from AquaRat. For MMLU, we used
mistral-large-latest to classify examples by
STEM subject and filtered out non-STEM exam-
ples, retaining 22,500 relevant entries. To identify
the best dataset combination for fine-tuning, we
ran several SFT experiments on the Qwen base
model using LoRa on each dataset individually
(Appendix C). The final dataset mix consisted
of 30,000 examples (10,000 from each of SciQ,
MMLU, and AquaRat) for fine-tuning, with an ad-
ditional 150,600 examples for full fine-tuning. Its
detailed distribution can be found in Appendix G
Our W8A8 and W8A16 quantization methods
with SmoothQuant and GPTQ require calibra-
tion to estimate appropriate scaling factors for
weights and activations to minimize accuracy
loss. Following standard practice in literature
(Williams and Aletras, 2024), we sampled cali-
bration data from datasets similar to those used
during training/fine-tuning, ensuring calibration
statistics match the data distribution encountered
at inference. We used the dataset used to fine-
tune our MCQA model, as well as Ultrachat200k
(Ding et al., 2023), a multi-turn dialogue dataset
designed to train chat models. We randomly
sampled 256/512/1,024 examples, and settled
with 512 since prior work (Williams and Ale-
tras, 2024), and our own experiments(Appx K),

showed diminishing returns in accuracy for larger
calibration sets. For QLoRA fine-tuning, we
reused the full and balanced MCQA datasets,
with sample sizes 512/4,096/30,000.
For the RAG model, we focused on building a
high-quality corpus based on authoritative STEM
textbooks. To achieve this, we collected 28 ref-
erence books covering various STEM subjects.
However, some of the books were not properly
OCR-processed. To address this issue, we used
the latest Mistral OCR model, processing each
book by splitting it into partial PDFs of 10 pages
to avoid issues with the API. This process re-
sulted in 28 cleaned and structured Markdown
files, one for each book. Compared to raw text ex-
traction from PDFs, Markdown preserves seman-
tic structure (e.g., headings, lists, formulas, code),
which has been shown to improve the quality of
data used for LLM pretraining and instruction
tuning (Chen et al., 2025). This is particularly
important in the context of STEM content, where
accurate parsing of mathematical expressions is
essential, something that Mistral OCR handled
effectively in our pipeline.
Some of the books sourced from unofficial chan-
nels, raising ethical concerns regarding copyright.
While the project is strictly academic and non-
commercial, we acknowledge the importance of
respecting intellectual property. To limit expo-
sure, the Hugging Face repository will be made
private once the project is completed.
Concerning the training data for the LoRA fine-
tuning, we used the train split of allenai/sciq
reformatted.
In addition to the textbook corpus, we explored
other data sources and filtering strategies to en-
rich the RAG corpus, including the Wiki STEM
Corpus (conjuring92, 2024), a curated subset of
H4StackExchange (Lambert et al., 2023), and the
student-generated preference-pair dataset. Due
to time and resource constraints, these alterna-
tive datasets were not fully integrated into the
final RAG pipeline but are described and made
available in Appendix A.
For the reward model, we built three prefer-
ence datasets, each filtered to include only
STEM-related content and formatted to share a
consistent schema: prompt, chosen and rejected.
Our first dataset (DPO1) comes from argilla/
ultrafeedback-binarized-preferences
(arg, 2023), filtered by running each prompt
through the Mistral model, which we
prompted to classify whether the question
was STEM-related. The second dataset
(DPO2) is a merge of PrimeIntellect/
SYNTHETIC-1-Preference-Data (Mat-



tern et al., 2025a), a synthetic (Llama-
generated) set of pairs responses
to STEM questions, and prhegde/
preference-data-math-stack-exchange
(Lambert et al., 2023), a real and human-
annotated preference pair dataset drawn from
Math Stack Exchange. The last one comes
from allenai/reward-bench (Lambert et al.,
2024) filtered to include only STEM-related
questions, and served as our primary evaluation
set. Using these datasets, we were able to
conduct a controlled study of how different
training-set combinations affect downstream
reward-modeling performance.
On another hand, the evaluation data to compare
our models is based on six MCQA datasets. We
used the test splits of the datasets D1 to D4 de-
scribed earlier. Additionally, we included (D5) a
dataset derived from the preference-pair dataset
constructed earlier this semester by all students.
We filtered it to retain only multiple-choice ques-
tions with four answers. Furthermore, we incor-
porated (D6) a synthetic benchmark consisting of
500 generated questions by Mistral, which were
then double-checked by GPT-4o to ensure they
were correct, leaving a total of 462 valid ques-
tions. Together, these six datasets cover a broad
range of STEM domains and reasoning skills.
Links to all evaluation datasets are provided in
Appendix B.

• Evaluation method: For the MCQA, Quantized,
and RAG models, accuracy is computed by evalu-
ating each multiple-choice question individually,
with four answer choices labeled A, B, C, and
D. The model receives the question along with
all four options. To ensure robustness, a human
analysis was conducted to check that the model
doesn’t repeatedly produce the same outputs or
follow undetected patterns in the data. This eval-
uation examined the model’s responses for vari-
ability and consistency. Additionally, we used
Mistral to analyze the explanations from our rea-
soning MCQA model specifically on the SciQ
evaluation set. This process allowed us to investi-
gate the primary causes of errors and understand
the weaknesses in the model’s reasoning. These
errors were classified into four categories: hal-
lucination, where the model generates false or
fabricated information; irrelevance, where the re-
sponse doesn’t address the question; misinterpre-
tation, where the model misunderstands the input;
and inconsistency, where the response contains
contradictions or logical errors. These metrics
were instrumental in understanding the model’s
performance and pinpointing areas for improve-
ment.

For the RAG model specifically, a set of rel-
evant documents is retrieved from the FAISS
vector database corresponding to the RAG cor-
pus dataset. These documents are initially di-
vided into 512-token chunks. Retrieval is per-
formed by the embedding model, which ranks
the chunks according to their cosine similarity
with the question embedding, selects the top-k
most relevant chunks, and includes them as con-
text before the question and its answer choices.
The exact prompt format used for evaluation is
provided in Appendix E.
Concerning the quantized model, we also derived
others metrics to assess the memory and inference
performance: the model size in VRAM, as esti-
mated by the calculate_maximum_sizes func-
tion from the Accelerate utilities, the VRAM
usage immediately after loading the model onto
the GPU, the peak VRAM during evaluation, the
disk size of the model, the total evaluation time
and the number of tokens generated per second
(Appx H).
To compare the different quantization approaches,
we defined a score that captures the trade-off be-
tween accuracy loss and VRAM usage for each
evaluation set i, as shown in Equation 1:

Score(i)quant =
Accuracy(i)

ModelSizeVRAM
× 100 (1)

We additionally compute the average score across
all evaluation sets to summarize overall perfor-
mance. Regarding the reward model measure
of quality, we computed accuracy on held-out
preference pairs drawn from our STEM-filtered
evaluation dataset described earlier. We used the
base model Qwen/Qwen-0.6B-Base as a refer-
ence model for scoring as long as the reward
model accuracy. This evaluation protocol ensures
that we compare models by their ability to predict
preferences on new STEM questions, and how
they are compared to the base model.

• Baselines: The baselines are the results obtained
with Qwen/Qwen3-0.6B-Base.

• Experimental details: We fine-tuned the STEM-
knowledge SFT model with a train batch size of 2,
gradient accumulation steps of 8 (effective batch
size 16), learning rate of 2e-5, and trained for 3
epochs. Training took approximately 29 hours.
For MCQA, we explored two main approaches:
full fine-tuning and LoRA-based fine-tuning,
the latter reducing computational cost by updat-
ing only a small portion of the model parameters.
LoRA Fine-Tuning (M1 model): LoRA was
used to fine-tune the model on individual datasets
and a merged set of around 30k examples, balanc-
ing performance and efficiency. We experimented



with learning rates of 5e-4, 1e-5, 5e-5, and 2e-6.
LoRA on Domain-Knowledge Pre-fine-Tuned
Models (M2 model): LoRA was applied to a
pre-fine-tuned model, rich in domain knowledge,
to further optimize it for MCQA tasks.
Full Fine-Tuning (M3 model): Full fine-tuning
was performed on a 150k dataset, comparing the
impact of large-scale training with the efficiency
of LoRA.
The dataset formatting strategy followed the same
approach as in the LightEval evaluation, except
for the reasoning model that received explana-
tions alongside the correct letter. Training param-
eters were optimized to avoid overfitting, using
evaluation loss to select the best model. We em-
ployed the AdamW optimizer with a learning rate
of 5e-5, batch size of 4, gradient accumulation
of 4, and 3 epochs. Training times varied: LoRA
on SciQ took about 1 hour, while full fine-tuning
took around 25 hours.
SmoothQuant + GPTQ (W8A8): The calibra-
tion set of 512 samples was drawn either from
UltraChat200k or from the full MCQA dataset. In
the latter case, samples were formatted as MCQA
prompts in the same way as during lighteval
evaluation. Each prompt was tokenized with a
maximum sequence length of 2,048 tokens (as
recommended in (Williams and Aletras, 2024))
and passed through the quantization pipeline,
which first applied activation smoothing using
SmoothQuant, followed by 8-bit quantization of
linear layers using GPTQ (W8A8).
GPTQ (W4A16) - Weight-only quantization
using GPTQ: The model was calibrated with
llmcompressor on 512 random samples from
UltraChat200k, with a maximum sequence length
of 2,048 tokens. Linear layers were quantized to
4-bits.
QLoRA (4-bit base + LoRA adapters): We
fine-tuned Qwen/Qwen3-0.6B-Base model us-
ing QLoRA, applying 4-bit quantization (NF4
+ double quantization, bfloat16 compute) to the
frozen base model. LoRA adapters were trained
on MCQA-style prompts formatted similarly to
lighteval. We experimented with both the full
and balanced MCQA datasets, using 512, 4,096,
30,000 samples. The fine-tuning used a LoRA
configuration with r = 8, α = 16, and dropout
= 0.05, targeting all linear layers (as recom-
mended for smaller models in (Dettmers et al.,
2023)). Training was performed for 1 epoch with
a learning rate of 2e-4 and a batch size of 4. After
training, the LoRA adapters were merged into the
base model for evaluation.
For the RAG model, we fine-tuned both Qwen/
Qwen3-0.6B-Base and the SFT model using

LoRA. The LoRA configuration used a rank
r = 16, lora\_alpha=32 and a dropout of 0.05.
During training, we retrieved the top k = 5
most relevant 512-token chunks for each ques-
tion, based on cosine similarity in the embedding
space, and prepended them to the prompt before
the question and its answer choices. Training was
done with a batch size of 4, a learning rate of 5e-
5, 3 epochs, and gradient accumulation steps of
4. Each training run took approximately 7 hours.
Regarding the reward model, we explored
several training strategies, varying both the
loss formulation and the choice of training
data. We tried ORPO (Hong et al., 2024), a
new fine-tuning technique that combines the
traditional supervised fine-tuning and preference
alignment stages into single process. This
reduces the computational resources and time
for training. In parallel, we also trained two
close settings : traditional DPO that directly
optimizes a pairwise preference ranking loss
without requiring a separate policy gradient or
reinforcement learning steps, and DPO following
a SFT.
We tried training using ORPO by varying the
learning rate and the training set. However, when
comparing to our DPO results, ORPO underper-
formed relative to it. To improve upon this, we
ran additional DPO experiments on the argilla/
ultrafeedback-binarized-preferences
dataset, in which we varied the learning rate
(2e-6, 1e-5 and 5e-5) and whether we use SFT
before or not. This yields six distinct training
runs. By evaluating all six, we aim to understand
both the impact of the learning rate itself and the
effect of performing an SFT before DPO.
Across all runs, we used a train-validation split,
AdamW for optimization, model checkpoints
and the loading of the model based on the best
performing model on the validation set.

• Results:
We evaluated all of our models on the 6 evaluation
datasets (D1 to D6) mentioned earlier. Starting
with the balanced 30k dataset mentioned before,
we fine-tuned the model using LoRa while vary-
ing the learning rate. This process was carried
out across all the datasets, and we present their re-
sulting average accuracy in 1 and details for each
dataset individually are provided in Appendix G.

Lr 5e-4 1e-5 5e-5 2e-6
Acc. 51.60% 52.96% 55.13% 51.56%
Table 1: Average Accuracy vs Learning Rate

Then, we evaluated models M1 (LoRa-only with
the balanced 30k dataset), M2 (LoRa on a model
trained on knowledge domain) and M3 (Full-
finetuning on the 150k dataset) using the best-



performing learning rate, presenting the results
for the main models 1.

Figure 1: Comparison of MCQA models’ accuracy

Therefore, we selected M1 as the best model for
MCQA, as it strikes the best balance of accuracy
across all our benchmarks.
For the reasoning model, a zero-shot prompt
achieves an accuracy of 70.25%, while a one-
shot strategy slightly improves this to 71.90% on
the SciQ test set. Regarding the error types, we
observe the following 4:

Figure 2: Comparison of errors for the reasoning model

Quantized approaches abbreviated as follows:
Q1: Qwen3-0.6B-Base, Q2: 8-bit bitsandbytes,
Q3: 4-bit bitsandbytes, Q4: SmoothQuant +
GPTQ W8A8 calibrated on UltraChat (512 sam-
ples), Q5: GPTQ W4A16 calibrated on UltraChat
(512 samples) and Q6: QLoRA on MCQA bal-
anced (30k samples)

Model Acc. Size Tokens/s Score
Q1 48.40 1136.64 33.82 4.26
Q2 47.95 716.88 17.76 6.69
Q3 46.00 506.88 32.64 9.08
Q4 48.10 617.35 17.36 7.79
Q5 46.35 513.44 20.92 9.03
Q6 50.91 506.88 65.44 10.04

Table 2: Comparison of quantized models: average accu-
racy (%), VRAM model size (MB), tokens generated/s, and
score (see Equation 1).

Q6 has the smallest model size (4-bit quantized
weights) yet achieves the highest overall accuracy,
outperforming all other quantized models and
even the unquantized base model on most evalua-
tion sets (Appx I). This makes it the best model
in terms of accuracy–memory trade-off score. Al-
though inference speed is hardware-dependent,

GPTQ models tend to be slower due to runtime
dequantization (vLLM Team, 2024). In contrast,
QLoRA avoids these costs when LoRA weights
are merged prior to evaluation.
For the RAG, we evaluated different models on
the RAG corpus based on the 28 STEM books
described earlier, with the BAAI/bge-small
embedding model. The models evaluated
are: (R1) Qwen/Qwen3-0.6B-Base; (R2)
NFX74/Qwen3-0.6B-Base-LoRA-SciQ-RAG
the fine-tuned model with LoRA adapter;
(R3) NFX74/Qwen3-0.6B-Base-SFT-STEM
the SFT model; (R4) NFX74/Qwen3-0.
6B-Base-SFT-STEM-LoRA-SciQ-RAG
the fine-tuned model with LoRA
adapter on the SFT model; and (R5)
LinaSad/MNLP_M3_mcqa_model the best
MCQA model. The results are showed on 3:
Dataset R1 R2 R3 R4 R5
D1 44.99 44.99 45.43 45.43 50.95
D2 73.19 73.19 71.41 71.41 79.19
D3 84.10 84.10 83.60 83.60 88.90
D4 25.98 25.98 23.62 23.62 28.74
D5 40.06 40.06 38.58 38.58 49.26
D6 20.78 20.78 33.55 33.55 29.87

Table 3: RAG accuracy for different models on selected
datasets (values in %)

For the reward model, varying learning rate and
training strategy gave us the results in figure 3 on
the evaluation dataset.

Figure 3: Performance comparison between different DPO
training strategies.

4 Analysis
An unexpected finding, diverging from existing liter-

ature, is that Qwen fine-tuned with LoRa outperformed
full fine-tuning with a larger dataset (Anyscale, 2023;
Teknoloji, 2023). This can be attributed to LoRa’s effi-
ciency, which fine-tunes only a subset of parameters,
allowing for faster convergence and less overfitting.
The full fine-tuning dataset, dominated by AquaRat
(about 80%), introduced bias towards it. Addition-
ally, using LoRa with SFT for domain knowledge
sometimes improved performance on certain bench-
marks, but LoRa-only fine-tuning was more balanced
across all benchmarks. The domain knowledge dataset,
mainly consisting of Math and coding tasks, led to su-
perior performance on domain-specific benchmarks
like D4 and D5, but less so on more diverse bench-



marks. Its advantage was particularly noticeable in our
synthetic benchmark, which includes a wider range
of STEM subjects. However, since this benchmark
is synthetic, and despite being evaluated by two ad-
vanced LLMs, we are cautious about fully general-
izing these results. In terms of reasoning, the one-
shot strategy slightly outperformed zero-shot, as previ-
ous research (Vinyals et al., 2016) suggests one-shot
learning provides more context for better decision-
making. However, both strategies faced issues with
misinterpretation and hallucination, especially with
the MCQA dataset’s complex, context-dependent ques-
tions, which likely contributed to inaccuracies.
The fact that QLoRA outperforms the unquantized
base model is expected: fine-tuning on domain-
relevant MCQA prompts enables the model to bet-
ter align with the structure and reasoning patterns re-
quired by the task. Furthermore, accuracy increases
with the size of the fine-tuning dataset. Q6, trained on
30,000 domain-relevant examples, outperforms vari-
ants trained on smaller 512/4,096 subsets (Appx J),
confirming the benefit of larger, high-quality data. Re-
garding calibration, models calibrated on UltraChat
achieve comparable or superior accuracy to those cal-
ibrated on MCQA data (Appx K). This may be ex-
plained by UltraChat’s greater diversity and broader
coverage of question types, making it more represen-
tative of inference-time inputs and potentially leading
to better calibration statistics. We also examined the
effect of calibration set size. Increasing the number
of calibration samples from 256 to 512 yields a mea-
surable improvement, but gains diminish beyond that.
This observation aligns with prior findings (Williams
and Aletras, 2024), which suggest that a small but
diverse calibration set is sufficient to capture represen-
tative activation statistics.
While RAG is generally expected to enhance perfor-
mance by leveraging external knowledge, our exper-
iments show limited benefits in the STEM multiple-
choice setting: the RAG model underperforms the best
MCQA model. This likely stems from partially rele-
vant or noisy retrieved chunks that misalign with the
question context, causing confusion rather than clar-
ification. Surprisingly, the fine-tuned LoRA models
(M2 and M4) perform identically to their base ver-
sions (M1 and M3) across all datasets, suggesting a
possible error during fine-tuning that warrants further
investigation. RAG’s limited gains may also be due
to suboptimal retrieval parameters, such as chunk size
and the number of retrieved passages (k). Too many
or overly long chunks can dilute relevance and lower
accuracy. Similar concerns have been raised in prior
work (Joren et al., 2024), emphasizing that retrieval
quality, driven by retriever effectiveness and corpus
structure, remains a key challenge for applying RAG
to fine-grained STEM questions.

Initializing the reward model from an SFT-fine-tuned
checkpoint consistently outperforms a "DPO-only"
setup. At a learning rate of 5e-5, "DPO post SFT"
reaches ≈81% held-out accuracy, whereas DPO-only
peaks near 80 %. Lower learning rates (2e-6) lead to
underfitting for both variants, confirming that warm-
starting on domain knowledge places the model in a
better parameter region and a relatively high learning
rate is necessary for DPO’s pairwise loss to move away
from the SFT minimum.

5 Ethical considerations

Our paper focuses on fine-tuning Qwen for STEM
subjects using English-language data. While this en-
sures consistency and high-quality datasets, it limits
accessibility for non-English speakers, marginalizing
learners proficient in other languages. Future work
should consider multilingual support to promote more
equitable access and bridge the digital divide. An-
other key concern is that students may become overly
reliant on the model for answers, undermining engage-
ment with course material and encouraging academic
dishonesty. This could be mitigated by providing incre-
mental hints rather than immediate answers, fostering
active learning. Finally, the environmental impact of
training large-scale models should not be overlooked.
Optimizing efficiency and using renewable energy for
deployment can help minimize the carbon footprint
associated with this technology. By addressing these
concerns, we can maximize the educational benefits
of fine-tuning Qwen while minimizing its potential
harms.

6 Conclusion

In this project, we developed a compact, special-
ized educational assistant using a 600M-parameter
open-source LLM, fine-tuned on STEM synthetic
question-answering data. The MCQA model with
LoRa achieved an average accuracy of 55.1% on
our benchmarks, while the quantized version main-
tained or exceeded base accuracy with reduced model
size, balancing performance and efficiency. The RAG
model, which retrieves information from STEM text-
books, showed limited improvement due to partially
relevant retrievals, highlighting the importance of cor-
pus quality and retrieval alignment. Our DPO-based
reward model achieved over 80% accuracy on STEM
preference data, outperforming ORPO, which was less
effective. Experiments showed that starting from SFT
and using smaller, filtered datasets with dropout regu-
larization led to better results. In summary, lightweight
fine-tuning, preference alignment, and careful dataset
design can create strong STEM-specific assistants. Fu-
ture work could extend this to broader educational
tasks, explore retrieval-enhanced preference optimiza-
tion, and address RAG limitations.
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A Alternative RAG Data Sources
In addition to the textbook corpus, we explored

several alternative data sources to diversify the RAG
corpus. These include the Wiki STEM Corpus (conjur-
ing92, 2024), which consists of Wikipedia articles
filtered for STEM-related topics, as well as multi-
ple subsets of the H4StackExchange dataset (Lambert
et al., 2023). One subset includes only high-quality
answers under 3,000 characters; another contains ques-
tion–answer pairs where the question is under 2,000
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characters and the answer under 3,000; a third ver-
sion retains accepted or highly rated answers (score
above 3), chunked into 1,000-character segments with
150-character overlap. We also generated a dataset
from the student-generated preference-pair dataset by
prompting mistral-large-latest with the question,
its options, and the correct answer to obtain concise
responses without chunking. These datasets were not
integrated into the final RAG pipeline due to time and
resource constraints, but they are publicly available
for further exploration (see Appendix B).

B Resources

Code repository: https://github.com/
matthias-wyss/LiSoViMa

Hugging face datasets:
• SFT training dataset: https://huggingface.
co/NFX74/SFT_STEM_100k

• MCQA final training dataset: https:
//huggingface.co/datasets/LinaSad/
MNLP_M3_mcqa_dataset

• MCQA large dataset: https://huggingface.
co/datasets/LinaSad/LVSM_final

• MCQA synthetic evaluation set: https:
//huggingface.co/datasets/LinaSad/
Synth_mistral

• MCQA preference data formatted evalua-
tion set: https://huggingface.co/datasets/
LinaSad/firstm_test_set

• Quantized models UltraChat200k calibration
dataset: https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k

• Final Quantized model QLoRa fine-tuning
dataset: https://huggingface.co/datasets/
mkartofel/MNLP_M3_quantized_dataset

• RAG SciQ training dataset: https://
huggingface.co/LiSoViMa/SCiQ_formatted

• RAG corpus dataset from 28 STEM books:
https://huggingface.co/NFX74/rag_
corpus_stem_books

• RAG corpus dataset from Wikipedia STEM:
https://huggingface.co/NFX74/Wiki_
STEM_Corpus

• RAG corpus dataset from H4 answers under
3,000 characters: https://huggingface.co/
LiSoViMa/H4StackExchange_STEM_small_
answers

• RAG corpus dataset from H4 questions
under 2,000 characters and answers under
3,000: https://huggingface.co/LiSoViMa/
H4StackExchange_STEM_small_questions_
answers

• RAG corpus dataset from H4 selected or
score above 3 answers chunked: https:
//huggingface.co/LiSoViMa/H4_STEM_
selected_or_pm_score_over_3_chunked

• RAG corpus dataset from student dataset
answers generated: https://huggingface.
co/LiSoViMa/M1_MCQ_generated_with_
questions

• DPO training dataset: https://huggingface.
co/datasets/thdsofia/DPO_STEM_training

Hugging Face models:
• SFT model: https://huggingface.co/NFX74/
Qwen3-0.6B-Base-SFT-STEM

• Final MCQA model (with LoRa):
https://huggingface.co/LinaSad/MNLP_
M3_mcqa_model

• MCQA fully finetuned model https:
//huggingface.co/LinaSad/mcqa_full_
finetune

• MCQA with LoRa on top of domain knowledge
https://huggingface.co/LinaSad/mcqa_
lora_sft50k_final

• MCQA with learning rate 5e-4: https:
//huggingface.co/LinaSad/mcqa_lora_
30k_5e_4

• MCQA with learning rate 1e-5: https:
//huggingface.co/LinaSad/mcqa_lora_
30k_1e_5

• MCQA with learning rate 2e-6: https:
//huggingface.co/LinaSad/mcqa_lora_
30k_2e_6

• MCQA model giving explanations:
https://huggingface.co/LinaSad/mcqa_
sciq_merged_reason_1

• Quantized model SmoothQuant + GPTQ W8A8
calibrated on UltraChat200k with 512 sam-
ples https://huggingface.co/mkartofel/
Qwen3-0.6B-llmcompressor-W8A8-calib_
ultrachat_512

• Quantized model SmoothQuant + GPTQ W8A8
calibrated on MCQA large dataset with 512 sam-
ples https://huggingface.co/mkartofel/
Qwen3-0.6B-llmcompressor-W8A8-calib_
LVSM_final_512

• Quantized model GPTQ W4A16 cali-
brated on UltraChat200k with 512 sam-
ples https://huggingface.co/mkartofel/
Qwen3-0.6B-llmcompressor-W4A16-calib_
ultrachat_512

• Quantized model QLoRa on MCQA
large dataset with 1,024 samples
https://huggingface.co/mkartofel/
Qwen3-0.6B-qlora-LVSM_final_1024

• Quantized model QLoRa on MCQA
large dataset with 512 samples https:
//huggingface.co/mkartofel/Qwen3-0.
6B-qlora-LVSM_final_512_new_params

• Quantized model QLoRa on MCQA
balanced dataset with 512 samples
https://huggingface.co/mkartofel/
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Qwen3-0.6B-qlora-MCQA_lora_final_512
• Final Quantized model QLoRa on MCQA

balanced dataset with 30k samples
https://huggingface.co/mkartofel/
MNLP_M3_quantized_model

• RAG model with LoRA fine-tuning:
https://huggingface.co/NFX74/Qwen3-0.
6B-Base-LoRA-SciQ-RAG

• RAG model with LoRA fine-
tuning from SFT model: https:
//huggingface.co/NFX74/Qwen3-0.
6B-Base-SFT-STEM-LoRA-SciQ-RAG

• DPO model with learning rate 5e-5:
https://huggingface.co/thdsofia/DPO_
model_lr5e-5

• DPO model with learning rate 1e-5:
https://huggingface.co/thdsofia/DPO_
model_lr1e-5

• DPO model with learning rate 2e-6: https://
huggingface.co/DPO_model_lr2e-6

• DPO model with learning rate 2e-6, post
SFT: https://huggingface.co/DPO_model_
lr2e-6_postSFT

• DPO model with learning rate 5e-5, post SFT:
https://huggingface.co/thdsofia/DPO_
model_lr5e-5_postSFT

• DPO model with learning rate 1e-5, post SFT:
https://huggingface.co/thdsofia/DPO_
model_lr1e-5_postSFT

• Final DPO model: https://huggingface.co/
MNLP_M3_dpo_model

C MCQA - Models’ result depending on
dataset

• M1 : LoRa with MMLU trainig set
• M2 : LoRa with SciQ trainig set
• M3 : LoRa with 10k of AquaRat trainig set
• M4 : LoRa with 50k of AquaRat trainig set
• M5 : LoRa with all of AquaRat trainig set

Dataset M1 M2 M3 M4 M5
All 52.97 54.54 52.04 53.10 53.62
D1 50.55 44.50 49.54 49.89 48.85
D2 79.50 77.98 77.16 77.59 77.70
D3 83.70 89.60 85.60 85.10 85.50
D4 31.10 33.46 35.83 41.34 46.06
D5 48.07 48.37 48.07 46.29 46.29
D6 24.89 28.35 16.02 18.40 17.32

Table 4: MCQA accuracy for models on selected datasets
(values in %)

D MCQA - Dataset distribution for
full-finetuning:

Figure 4: Dataset distribution for mcqa full-finetuning

E Evaluation Prompt Format
For evaluating multiple-choice questions (MCQA

and quantized models), we used the following prompt
format:

The following are multiple choice
questions (with answers) about
knowledge and skills in advanced
master-level STEM courses.

<Question text>

A. <Choice A>
B. <Choice B>
C. <Choice C>
D. <Choice D>

Answer:

For the RAG model, the prompt also includes top-k
chunks retrieved from a FAISS vector database. These
chunks are prepended before the question to provide
additional context:

Relevant Documents:
Document 0:::
<retrieved_chunk_0>

Document 1:::
<retrieved_chunk_1>

...

Document k-1:::
<retrieved_chunk_k-1>

The following are multiple choice
questions (with answers) about
knowledge and skills in advanced
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master-level STEM courses.

<Question text>

A. <Choice A>
B. <Choice B>
C. <Choice C>
D. <Choice D>

Answer:

The model evaluates all answer choices (’A’, ’B’, ’C’,
’D’) by computing their conditional log-likelihoods
and selects the one with the highest score as its final
answer.

F MCQA Training Code

The full training configuration used for all fine-
tuning experiments is provided below.

training_args = SFTConfig(
output_dir="./configs/qwen-general-full",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=3,
save_strategy="steps",
logging_dir="./logs",
logging_steps=100,
learning_rate=5e-5,
weight_decay=0.01,
gradient_checkpointing=True,
gradient_accumulation_steps=4,
eval_strategy="steps",
eval_steps=100,
save_safetensors=False,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
completion_only_loss=True,

)

G MCQA - detailed models results with
variation of learning rate

These models were all run using LoRa and the 30k
balanced dataset.

Figure 5: Models accuracies on MCQA while varying the
learning rate

H Quantization - Quantization models
performance metrics

Quantized approaches abbreviated as follows:
• Q1: Unquantized base model (Qwen3-0.6B-

Base)
• Q2: 8-bit quantization using bitsandbytes
• Q3: 4-bit quantization using bitsandbytes
• Q4: SmoothQuant + GPTQ (W8A8), calibrated

on UltraChat (512 samples)
• Q5: GPTQ (W4A16), calibrated on UltraChat

(512 samples)
• Q6: QLoRA fine-tuned on 30k samples from the

MCQA balanced dataset
Performance metrics computed:

• Model size in VRAM, as estimated by the
calculate_maximum_sizes function from the
Accelerate utilities (GB)

• VRAM usage immediately after loading the
model onto the GPU (GB)

• Peak VRAM during evaluation (GB)
• Disk size of the model (GB)
• Total evaluation time (minutes)
• Number of tokens generated per second (to-

kens/second)
Metric Q1 Q2 Q3 Q4 Q5 Q6
Model size 1.11 0.70 0.49 0.70 0.50 0.49
VRAM load 1.40 0.73 0.70 0.99 0.87 0.87
Peak VRAM 18.56 19.10 18.50 19.35 19.25 19.62
Disk sizd 2.26 2.26 2.26 2.03 1.62 1.62
Eval time 26.94 46.31 27.88 46.93 40.14 27.61
Tokens/s 33.82 17.76 32.64 17.36 20.92 65.44

Table 5: Performance and memory metrics for each quan-
tized model.

I Quantization - Quantization models
accuracy on all evaluations sets

Quantized approaches abbreviated as follows:
• Q1: Unquantized base model (Qwen3-0.6B-

Base)
• Q2: 8-bit quantization using bitsandbytes
• Q3: 4-bit quantization using bitsandbytes
• Q4: SmoothQuant + GPTQ (W8A8), calibrated



on UltraChat (512 samples)
• Q5: GPTQ (W4A16), calibrated on UltraChat

(512 samples)
• Q6: QLoRA fine-tuned on 30k samples from the

MCQA balanced dataset

Eval set Q1 Q2 Q3 Q4 Q5 Q6
All 48.40 47.95 46.00 48.10 46.35 50.91
D1 48.85 48.49 40.41 48.09 44.64 48.14
D2 76.35 75.87 59.94 76.32 70.90 75.70
D3 84.20 83.40 75.20 83.90 82.80 86.10
D4 31.50 29.92 24.80 30.71 28.74 40.55
D5 36.50 38.58 30.86 36.80 29.38 41.54
D6 12.99 11.47 44.81 12.77 21.65 13.42

Table 6: Accuracy (%) of each quantized model on each
evaluation set.

J Quantization - Impact of sample size for
QLoRa fine-tuning

To assess how fine-tuning sample size affects accu-
racy, we trained QLoRA models on randomly sampled
subsets of the MCQA 30k balanced dataset, using 512,
4,096, and 30,000 examples.

Eval set 512 4,096 30,000
All 42.44 44.18 50.91
D1 40.83 42.58 48.14
D2 65.49 67.66 75.70
D3 78.10 80.80 86.10
D4 27.95 28.35 40.55
D5 31.45 34.42 41.54
D6 10.82 11.26 13.42

Table 7: Accuracy (%) of QLoRA models on each evalua-
tion dataset with varying fine-tuning set size.

K Quantization - SmoothQuant + GPTQ
(W8A8) models, calibrated on different
datasets and with various calibration set
sizes

The models are quantized using llmcompressor,
with the SmoothQuant + GPTQ pipeline defined in
Section 2. At this point, the demo MCQA evaluation
set was used to compare the models’ performance. The
different models are abbreviated as follows:

• QA: Calibrated on SciQ (512 samples)
• QB: Calibrated on MCQA full (512 samples)
• QC: Calibrated on UltraChat (256 samples)
• QD: Calibrated on UltraChat (512 samples)
• QE: Calibrated on UltraChat (1024 samples)

Eval dataset QA QB QC QD QE
All 55.60 56.48 54.94 56.52 55.97
D1 48.49 48.83 48.02 48.49 48.21
D2 76.01 76.46 75.84 76.29 75.90
D3 84.00 84.00 84.10 84.30 84.20
D4 31.50 31.10 28.74 29.53 29.53
Demo 38.00 42.00 38.00 44.00 42.00

Table 8: Accuracy (%) of SmoothQuant + GPTQ (W8A8)
models calibrated on different datasets and sample sizes.

L Reward Model - ORPO results
To assess how both the choice of training data

and the optimization hyperparameters affect ORPO’s
performance, we carried out two experiments. Table
9 examines the impact of dataset composition by
reporting the accuracy achieved by models trained on
DPO1 alone, DPO2 alone, and the combined DPO1 +
DPO2 datasets. This comparison lets us isolate the
contribution of each data source and evaluate whether
simply merging them yields further gains. Table 10
explores the sensitivity of ORPO to the learning rate.
We retrained identical model architectures using three
different step sizes 1e-5, 2e-5 and 5e-5, reporting the
resulting accuracies.

Train dataset DPO1 DPO2 DPO1+DPO2
Accuracy 42.62 57.93 57

Table 9: Accuracy (%) of ORPO models trained on different
datasets.

Learning rate 1e-5 2e-5 5e-5
Accuracy 57.14 52.41 57.93

Table 10: Accuracy (%) of ORPO models trained using
different learning rates.


