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Abstract
This paper introduces a novel architecture for pre-
dicting the volatility of limit order books (LOBs)
using the FI-2020 dataset. Our approach com-
bines the strengths of Ordinary Differential Equa-
tion (ODE) networks and Cross-Stitch networks
to forecast the volatility on multi-horizon in high-
frequency trading environments. The ODE net-
work captures the continuous-time evolution of
market dynamics. Cross-stitch network layers
are used to improve forecasting performance by
allowing one time horizon to influence others.

To evaluate our approach, we compare it against
the Temporal Fusion Transformers (TFT) architec-
ture, a state-of-the-art method for temporal fore-
casting tasks, on the same FI-2010 dataset. Our
architecture outperforms the TFT architecture in
Mean Absolute Relative Error.

1. Introduction
Predicting the volatility of financial markets is crucial for ap-
plications such as risk management, portfolio optimization,
and algorithmic trading.

A limit order book (LOB) contains all buy and sell orders
for a financial asset, organized by price levels. It consists
of bid prices (highest prices buyers are willing to pay) and
ask prices (lowest prices sellers are willing to accept), along
with corresponding volumes. The order book reflects market
supply and demand, determines the asset’s market price, and
indicates liquidity by showing the depth of orders across
price levels. In high-frequency trading, the rapid evolu-
tion of the order book provides crucial insights into market
dynamics.

However, one faces a lot of challenges as LOB data is com-
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Figure 1. Example of a Limit Order Book

plex, high-dimensional, and non-stationary, especially when
it comes to precise and efficient forecasting over a range of
time horizons.

Traditional statistical models and basic machine learning ap-
proaches often fall short in capturing the intricate temporal
dependencies and nonlinear patterns within LOBs. Recent
advancements in deep learning have demonstrated potential,
but existing architectures typically fail to unify continuous-
time modeling with multi-horizon forecasting, leaving room
for improvement in capturing long-term market behavior
while maintaining short-term precision.

This research presents a novel approach that blends stitch
networks with Ordinary Differential Equation (ODE) net-
works in order to overcome these challenges. The ODE
network offers a strong basis for modeling volatility since it
reflects the continuous-time evolution of market dynamics.

We trained the TFT architecture on this dataset to effec-
tively compare the results of our proposed architecture in
outperforming baseline methods for volatility prediction in
multi-horizon tasks.

The remainder of this paper is organized as follows: Section
2 provides the necessary preliminaries, ethical risks and dis-
cusses related work. Section 3 presents our proposed model,
detailing its architecture and key components. Section 4
describes the experimental setup and evaluates the model’s
performance. Finally, Section 5 concludes the paper and
outlines potential directions for future research.
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2. Preliminaries
The predictability of stock markets has been extensively
scrutated since their creation, with evidence suggesting that
those financial markets are partially predictable even though
they may apparently and inherently seem complex. Tradi-
tional statistical methods such as simple moving averages,
often fail to capture these dynamics. Machine learning ap-
proaches, by contrast, excel at modeling such nonlinearity
without requiring prior assumptions, making them well-
suited for financial data analysis.

Recent work has focused on applying machine learning
techniques to predict limit order book (LOB) data. Early
studies utilized linear statistical methods. While effective
to some extent, these approaches were surpassed by end-to-
end nonlinear learning frameworks, which integrate feature
extraction into neural layers and achieves superior results on
datasets like FI-2010 (Ntakaris et al., 2018). These findings
emphasize the importance of data-driven feature extraction.

Deep learning has further advanced the field. In fact, Con-
volutional Neural Networks (CNNs) automatically tune fea-
tures to optimize performance and have been widely applied
in different fields, ranging from protein analysis to computer
vision. However, their use in financial data remains limited,
with existing implementations often gatekeeped by private.
Meanwhile, Long Short-Term Memory (LSTM) networks
have gained traction in financial time-series analysis due to
their ability to address vanishing gradients. Studies monitor-
ing LSTMs on large-scale LOB datasets have demonstrated
robust out-of-sample prediction accuracy.

A recent contribution in this area is DeepLOB: Deep Con-
volutional Neural Networks for Limit Order Books (Zhang
et al., 2019), which introduced a hybrid CNN-LSTM model
for LOB prediction. This work incorporates the Inception
model, representing a significant advancement in using deep
learning for financial data analysis.

Concerning multi-horizon forecasting, a significant and re-
cent contribution by Google Cloud AI is Temporal Fusion
Transformers for Interpretable Multi-horizon Time Series
Forecasting (Lim et al., 2020), which introduced a new
architecture combining attention mechanisms with gating
layers to achieve both high performance and interpretabil-
ity. This Temporal Fusion Transformer effectively models
complex temporal dependencies and contextual information,
making it particularly suited for multi-horizon forecasting
tasks across diverse domains.

2.1. Ethical Risks

Neural networks used for financial volatility prediction
present lots of ethical risks, particularly regarding sustain-
ability, market fairness, and model explainability and ac-
countability. One critical concern is the high electrical en-

ergy consumption associated with training and deploying
these neural network models. This indeed contributes to in-
crease various carbon emissions, impacting climate change,
and governments and countries tasked with regulating emis-
sions from the different COPs. Because of the computa-
tional intensity of financial forecasting and the constant and
intense demand for accurate predictions and solutions, the
environmental impact of these models is both severe and
likely to continue without proper intervention with ethical
reasoning.

Furthermore, due to their opacity, neural networks increase
the possibility of market manipulation. Rich market players
might take use of our open-source volatility forecasts and
models to take preventative action, which would worsen
market volatility and put investors in an unfair situation.
Such abuse has the capacity to exacerbate financial system
injustices and destabilize markets. Furthermore, the ”black-
box” structure of neural networks makes interpretation more
difficult and encourages an excessive dependence on fore-
casts without a clear grasp of their limitations. Systemic
hazards may be increased by this opacity when uncertainty
is high. Although these ethical hazards were recognized
throughout the project, mitigation strategies could not be
implemented due to time, resource, and skill restrictions.
In order to overcome these obstacles, further study and
cooperation are needed to advance ethical AI methods in
financial forecasting that prioritize justice, sustainability,
and transparency.

2.2. Data set overview

One of the most popular and often used benchmarks in
financial machine learning research is the FI-2010 (Ntakaris
et al., 2018) dataset. The limit order book (LOB) data
from a Nordic stock exchange is provided at the millisecond
level, representing the complex microstructural dynamics of
financial markets. The dataset is especially well-suited for
high-frequency trading and volatility forecasting research
since it contains comprehensive information about bid and
ask prices, volumes, and order placements across numerous
LOB layers.

In this work, the decimal-normalized dataset derived from
FI-2010 (Ntakaris et al., 2018) was used to standardize fea-
ture scales and ensure numerical stability during training.
The features selected for the model include the volume,
bid price, and ask price across all LOB layers. This selec-
tion captures the core dynamics of order flow and liquidity,
providing a rich representation of market behavior.

By focusing on these features, the method minimizes feature
selection redundancy while efficiently utilizing the dataset’s
granularity to depict the market’s current situation. This
guarantees that the model inputs are highly informative and
computationally efficient, which is crucial for tasks like
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volatility prediction and multi-horizon forecasting.

The FI-2010 dataset’s goal of improving predictive model-
ing in financial environments, especially for tasks requiring
precise comprehension of high-frequency market dynamics,
is in line with the dataset’s extensive temporal and structural
information and emphasis on critical traits.

2.3. Data pre-processing

The FI-2010 dataset is composed of 5 stocks from the NAS-
DAQ Nordic stock market for a time period of ten consecu-
tive days. We started by computing the midprice for each
event (which is a variation of the midprice whether it be an
increase or a decrease) on the dataset using the following
formula:

Midprice =
Ask + Bid

2

To achieve better results, we decided to split these 5 stocks
to get 5 training sets and 5 testing sets independent to each
other, to feed to the model individually. When there was
a big drop in the mid price, this meant it was a new stock,
by doing so we obtained the following separation for the
training. The Figure 2 shows the training of the 5 split
stocks, the testing looks similar. With this method, we had
to train and test our model 5 times in total, one time for each
stock. Since our model is forecasting volatility, we had to

Figure 2. Separated 5 training stocks

derive this from the LOB dataset. It is widely believed that
the returns of the mid-price follow a geometric Brownian
motion. Under this assumption, we computed volatility as
the standard deviation of the log returns over a specified
time window, the log return is defined as :

log(Pt+1)− log(Pt)

In order to scale the values around mean with a unit standard
deviation, we standardize each stock individually, and for
each horizon, which have been chosen to be k=20, 50 and
100 like in (Zhang et al., 2019).

Using this method, we computed the volatility, using a
rolling window adapted to each of our forecasted horizon
(k=20, 50 and 100).
As we are working with high-frequency data, the short time
intervals between updates of the limit order book can result
in very low volatility values, with our target sometimes ap-
proaching zero. This behavior can lead the model to predict
values of zero instead of providing more precise approx-
imations. To address this issue, we scaled our volatility
predictions by a factor of 1000. This scaling was reverted
when computing performance metrics after training to en-
sure accurate evaluation of the model.
As the researchers did in the paper we mainly inspire our-
selves from (Zhang et al., 2019), we use the T = 100 most
recent states of the LOB as an input to our model for our
dataset. Specifically, a single input is defined as:

X = [x1, x2, · · · , xt, · · · , x100]
T ∈ R100×40,

where

xt =
[
p(i)a (t), v(i)a (t), p

(i)
b (t), v

(i)
b (t)

]n=10

i=1
.

Here, p(i) and v(i) denote the price and volume size at the
i-th level of a limit order book.

3. Model
Our Cross-Stitch ODE architecture is composed of 2 Cross-
Stitch units. A cross-stitch block is a mechanism used to
learn shared representations between two or more neural
network branches. It adaptively combines the feature maps
from different branches, allowing the network to decide how
much information to share.

To explain this architecture, we will use an example with a
simple case where we have 2 tasks. Given two feature maps
x1 and x2 from two network branches, a cross-stitch unit
produces new feature maps y1 and y2 as follows:

ytask1 = α11xtask1 + α12xtask2,

ytask2 = α21xtask1 + α22xtask2,

where αij are learnable parameters that control the con-
tribution of each input feature map to the output feature
maps.

The parameters αij are initialized such that:

α11 = α22 = 1 and α12 = α21 = 0,

which allows the initial feature maps to remain unchanged.
During training, the values of αij are updated to optimize
the network’s performance, enabling flexible sharing of fea-
tures between branches. As we are working with several
horizon, we decided to turn this cross stitch into a triangu-
lar one, as we thought shorter horizon should be able to
influence shorter horizons, but not the other way around.
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Our Cross-Stitch ODE architecture takes the 40 features
as input for each of the three chosen tasks (with horizons
k = 20, 50, 100). The architecture includes two Cross-stitch
blocks (as shown in Figure 3, built with cross-stitch units
as inspired by (Misra et al., 2016) with the possibility of
experimenting with a different number of blocks). Follow-
ing this, we apply an ODE layer using a standard ODE
function (with plans to explore alternative ODE functions in
future experiments). Finally, the output from the ODE layer
goes through a Linear layer to produce the multi-horizon
volatility forecasting with as activation function a SoftPlus,
a smooth approximation to the ReLU.

To optimize the multi-task learning framework, we em-
ployed a Multi-Task Dynamic Loss function inspired by
uncertainty weighting (Kendall et al., 2018). This approach
dynamically balances multiple tasks, accommodating differ-
ences in task difficulty and scale during training. Each task
is assigned an uncertainty parameter, represented as a learn-
able log variance which is updated during back-propagation.
This method improves multi-task learning by adapting task
importance dynamically, without manual tuning of task
weights, handling tasks with different output scales (e.g.,
regression vs. classification), and enhancing overall model
performance through efficient balancing of task contribu-
tions. By leveraging this dynamic weighting mechanism, the
model achieves better convergence and more robust predic-
tions across tasks with varying complexities and objectives.

Cross-stitch block

Task 1 Task 2 Task 3

Conv Block 1 Conv Block 1 Conv Block 1

Cross-Stitch Unit 1

Conv Block 2 Conv Block 2 Conv Block 2

Inception Block

Cross-Stitch Unit 2

Output Task 1 Output Task 2 Output Task 3

Figure 3. Cross-stitch block structure with an added Inception
block.

To compare our Cross-Stitch ODE network, we adapt the
Temporal Fusion Transformer (TFT) architecture from (Lim

et al., 2020) on the same dataset (Ntakaris et al., 2018). The
TFT is designed to provide a robust quantile prediction of
volatility as a range, capturing the inherent uncertainty and
variability in the data. It predicts three quantiles for each
time step:

• Low Quantile (e.g., 10th percentile): Represents the
minimum expected volatility, providing a lower bound.

• Median Quantile (e.g., 50th percentile): Represents
the most likely volatility, serving as the central predic-
tion.

• High Quantile (e.g., 90th percentile): Represents the
maximum expected volatility, offering an upper bound.

We train this architecture by adding as static input the in-
formation of which stock it is predicting on, and selected
as features the first layer of the order book, along with the
spread, defined as:

Spread = P
(1)
ask − P

(1)
bid

where P
(1)
ask is the price of the best ask and P

(1)
bid is the price

of the best bid in the first layer of the book. And we used
the median quantile (50th percentile) as the output for com-
parison with our proposed Cross-Stitch ODE network. This
allows for a direct evaluation of the central tendencies of
the predictions.

4. Experiments
To evaluate the different models, we used the Mean Abso-
lute Relative Error (MARE) metric that makes it suitable
for comparing predictions across different horizons with
different scales and provides a more interpretable measure
for low-value targets.

Table 1 presents MARE of our Cross-Stitch ODE model for
each stocks on the different chosen horizons (k = 20, 50,
100) for the 5th epoch. Table 2 presents the median quantile
MARE of the TFT model for all stocks on the different
chosen horizons for the 10th epoch.

k Stocks

Stock 0 Stock 1 Stock 2 Stock 3 Stock 4

20 0.5766 0.6055 0.7765 1.0000 1.0000

50 0.3656 0.6291 0.8665 0.8379 0.8465

100 0.2211 0.4993 1.2328 0.9783 0.9134

Table 1. MARE for Cross-Stitch ODE for different horizons k
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k Stocks

20 4.1120

50 2.1209

100 2.3096

Table 2. MARE for median quantile TFT for different horizons k

5. Conclusion
On the FI-2010 dataset, the TFT model performs below
expectations and in poor terms. Our Cross-stitch ODE ar-
chitecture, on the other hand, continuously produces better
outcomes throughout every prediction horizon. This in-
crease may be ascribed to the model’s improved capacity for
feature integration and its ability to better capture complex
temporal dynamics, both of which are very important for
the structure and properties of this dataset.

The ODE function itself could be changed as a possible
improvement. The model’s performance could be further
enhanced, for example, by using a GARCH function, which
has shown promise in forecasting volatility. Furthermore,
we could improve the model’s representational capability
by adding and mixing other and several Cross-Stich ODE
blocks, with different used convolutions.

However, the long and time-consuming training periods
and inadequate computing power restricted our capacity to
test and improve further. These limitations restrained our
ability to test more complex design configurations and better
investigate the parameter space.
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