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1 Introduction

Statistical arbitrage pairs trading is a market-neutral strategy that aims to exploit temporary price
anomalies between related financial instruments. Since its inception in the 1980s, the traditional
approach has relied on identifying pairs of stocks that exhibit strong historical co-movements. When
a divergence occurs, the arbitrageur takes a long position on the undervalued security and a short
position on the overvalued one, profiting as prices converge back to their long-term equilibrium.
However, classical similarity measures, such as Pearson correlation or Euclidean distance, suffer from
a significant drawback: they are highly sensitive to time shifts and misalignments. In high-frequency
environments, lead-lag structures between stocks are often non-linear and time-varying, making tra-
ditional fixed-time distance measures inadequate for capturing the true underlying dynamics.

To address these limitations, this project implements an integrated statistical arbitrage framework
based on the Optimal Causal Path (OCP) algorithm. This method utilizes a dynamic programming
approach to identify the most suitable non-linear mapping between two time series, allowing for an
elastic adjustment of the time axis. By efficiently determining the lead-lag structure at a minute-
by-minute resolution, the strategy identifies ”leader-follower” relationships where the information
contained in the leading stock’s returns can be used to predict the future movements of the following
stock.

In this report, we apply this sophisticated framework to high-frequency data of the S&P 100 con-
stituents for the period 2015-2017. Our objective is to reproduce the methodology that has generated
statistically and economically significant returns in the reference literature. We evaluate the perfor-
mance of the OCP-based strategy against classical benchmarks to assess its value-add in capturing
modern market inefficiencies.

To ensure the reproducibility of our results and provide a clear overview of the implementation, the
complete source code, including the OCP engine and the backtesting framework, is available on our
GitHub repository: https://github.com/matthias-wyss/0CP-StatArb-SP100.

2 Related Work

The methodology implemented in this project is primarily inspired by the work of Stiibinger (2018) [1],
who introduced a comprehensive statistical arbitrage framework based on the Optimal Causal Path
(OCP) algorithm. Stiibinger’s research addresses a significant limitation in classical pairs trading:
the sensitivity of traditional similarity measures, such as Euclidean distance or Pearson correlation,
to time shifts and misalignments.

The OCP Algorithm and Lead-Lag Structures The core innovation of the reference paper is
the development of a non-parametric, three-step algorithm designed to identify the optimal non-linear
mapping and lead-lag structure between two high-frequency time series.

e Step A determines an initial optimal lag by assuming a constant lead-lag structure and mini-
mizing a global cost measure across a defined range of lags.

e Step B utilizes dynamic programming to permit an elastic adjustment of the time axis, effec-
tively capturing time-varying lead-lag relationships by finding the path of lowest total cost.

e Step C extracts the average lag and the fluctuation (standard deviation) of the path to char-
acterize the stability of the relationship.

Stiibinger demonstrates through simulation that this approach is robust against noise and efficient in
detecting true causal dependencies.

High-Frequency Statistical Arbitrage Unlike lower-frequency strategies, Stiibinger applies the
OCP framework to minute-by-minute data of the S&P 500 constituents. The strategy logic rests on
the premise of information leadership: the algorithm exploits information about the leading stock
to predict the future returns of the following stock.


https://github.com/matthias-wyss/OCP-StatArb-SP100

The reference paper establishes a rigorous back-testing protocol:

e Formation Period: A 1-day window used to identify and select the top s = 10 pairs exhibiting
the most stable lead-lag structure (i.e., the lowest standard deviation o;).

e Trading Period: A subsequent 1-day window where trading signals are generated for the
following stock based on the movement of the leader.

e Execution Logic: Signals are triggered using Bollinger Bands (with parameters d = 20 and
k = 2.5) and an economic threshold 7 to ensure returns cover transaction costs.

Empirical Benchmark and Performance In the original study covering 1998 to 2015, the OCP
strategy generated an annualized return of 54.98% after transaction costs, with an annualized Sharpe
ratio of 3.57. These results significantly outperformed traditional benchmarks such as correlation
(COR), Manhattan distance (MAN), and lagged cross-correlation (LCC). Furthermore, the author
found that these returns do not load on common systematic risk factors, suggesting that the OCP
algorithm captures a unique form of market inefficiency.

By implementing this framework on the S&P 100 universe, our project seeks to validate these findings
and assess the persistence of these lead-lag anomalies in more recent market environments.

3 Method Implemented

3.1 Data

The dataset used in this project consists of historical Best Bid and Offer (BBO) quotes for all con-
stituents of the S&P 100 index. Prof. Challet Damien provided the data as 309 compressed .tar
archives, corresponding to 102 stocks and the SPY index over the years 2015, 2016, and 2017. Each
yearly .tar archive contains daily parquet files with all BBO updates recorded for that specific ticker.
Although 102 tickers were expected, only 93 contain usable data, as some .tar archives are empty.
Each parquet file corresponds to a single trading day and is named following the convention YYYY-MM-
DD-TICKER-bbo.parquet. Since BBO data is generated at high frequency, a single day may contain
several hundred thousand events.

Each row corresponds to a market event where at least one of the best bid or best ask levels has
changed. The main fields include:

e xltime: fractional days since 1899-12-30, representing the event timestamp.
e bid-price, ask-price: best bid and ask quotes.
e bid-size, ask-size: quote depths (not used in subsequent analysis).

Since the raw data is event-based with irregular timestamps, preprocessing is required to produce
uniform price series suitable for analysis.

Loading and extraction. FEach yearly archive is extracted programmatically. Daily parquet files
are loaded sequentially using Polars to allow efficient memory usage. Invalid or incomplete rows are
discarded to ensure data consistency.

Timestamp conversion and trading hours filtering. The xltime column is converted into
proper datetime objects localized to the America/New_York timezone, as tickers belong to NASDAQ
and NYSE markets. A separate date column is added to facilitate day-by-day processing. Each day’s
data is filtered to include only regular trading hours (9:30-16:00). The NASDAQ trading calendar
is used via pandas_market_calendars to ensure that all tickers are aligned on the exact same trad-
ing days, which is critical for computing consistent lead-lag relationships and returns in the OCP
algorithm.



Resampling and mid-price construction. For each trading day, the mid-price is computed as

bid-price; + ask-price,
my = 9 .

The series is then resampled at a 1-minute frequency restricted to regular trading hours. Missing
values are forward-filled and backward-filled to ensure a complete series. This procedure guarantees
that all 390 minutes per trading day are present, which is essential for consistent return computation
and for the stability of lag estimation in the OCP analysis.

Figure 1 shows the 1-minute mid-prices for AAPL on October 23rd, 2015.

Return computation. Minute-by-minute returns are computed from the resampled mid-price series
as
my — M1
ry=—————.
me—1
Each trading day therefore contains 389 returns, aligned with the 390 mid-price values. Figure 2 shows
the corresponding 1-minute returns for the same day.

1-Minute Midprices for AAPL.OQ on 2015-10-23 1-Minute Midprice Returns for AAPL.OQ on 2015-10-23

Midprice ($)
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Figure 1: 1-minute mid-prices for AAPL on Oc- Figure 2: 1-minute mid-price returns for AAPL
tober 23, 2015. on October 23, 2015.

Quality control and data selection. The pipeline ensures that only trading days between 2015-01-01
and 2017-03-31 are included, as most tickers have no data beyond March 31, 2017. Missing days are
detected using the NASDAQ calendar, and exception days can be removed if necessary. One notable
exception is November 27, 2015, when the U.S. stock market experienced an unusually early closure
due to Thanksgiving. Allowing this exception increases coverage from 17 complete tickers to 90 out of
the 93 usable tickers. Only tickers with complete and validated series are copied to a dedicated folder
for downstream analysis, producing a final dataset with fully aligned trading days. The SPY index
data was fully available and also included in this dataset.

Output format. The cleaned and processed data for each selected ticker is stored as a single Parquet
file, resulting in 90 files in total and 1 file for the SPY index data. Each file contains exactly 565 trading
days with 389 minute-by-minute returns per day, for a total of 219,785 rows, including the timestamp
and mid-price return. Parquet format provides efficient, compressed, and reproducible storage suitable
for analytical workloads, forming the foundation for all subsequent steps of the project, including causal
path analysis and backtesting of statistical arbitrage strategies. Initially, the raw dataset occupied
approximately 55 GB, but after preprocessing and selection, we obtain 91 Parquet files of roughly 2
MB each.

3.2 Optimal Causal Path (OCP) Algorithm

The Optimal Causal Path (OCP) algorithm is employed to identify statistically stable intraday lead—
lag relationships between pairs of stocks. Unlike traditional correlation-based approaches, OCP ex-
plicitly allows for time deformation between two return series, enabling the detection of both constant



and time-varying lags without assuming stationarity or cointegration. In this project, the OCP al-
gorithm is used exclusively as a pair selection mechanism during a daily formation period, providing
directional information that is subsequently exploited by the trading strategy.

Input Structure and Pair Universe The input to the OCP algorithm consists of minute-by-
minute return matrices constructed from the preprocessed data described in Section 3.1. For each
trading day D, a matrix

RD c RTXND

is built, where T' = 389 corresponds to the number of 1-minute returns during regular trading hours,
and Np denotes the number of stocks with complete data available on that day. Due to occasional
missing trading days for individual stocks, Np may vary across days but typically remains close to
the full universe of 90 selected tickers.

For each day D, all unordered stock pairs are generated from the available tickers, yielding

Np
2
candidate pairs. In the typical case where Np = 90, this corresponds to approximately 4,005 pairs
per day. The OCP algorithm is applied independently to each of these pairs using only data from the

formation day.
Each stock pair is represented by two aligned return series

$:(ZB1,...,$T), y:(y17"'ayT)a

where x; and y; denote the minute-by-minute returns of the two stocks at time t.

Step A: Constant Lag Estimation As an initial approximation, a constant lag between the two
return series is estimated. For a candidate lag [ > 0, the following cost function is defined:

T-1
)= it —wil.
=1

The optimal initial lag linit is obtained by minimizing this cost over a bounded lag window:

c(l),

linit = arg min
1€{0,...,Lmax}

where L.« = 30 minutes. This bound reflects the assumption that exploitable intraday lead—lag ef-
fects occur at short time horizons and also serves to reduce sensitivity to noise. The estimated constant
lag provides a robust initialization for the subsequent dynamic programming stage and significantly
reduces computational complexity.

Step B: Optimal Causal Path with Variable Lag While Step A assumes a constant lag, intraday
lead-lag relationships are often time-varying. To capture this behavior, Step B computes an optimal
causal alignment path between the two return series.
A causal path is defined as a sequence of index pairs

p = {(ni,mi)}y,
which aligns x,,, with y,,, subject to the following constraints:
e Boundary conditions: (ni,m;) = (1,1) and (n;,m;) = (T,7),
e Monotonicity: n;11 > n; and m;11 > my,

e Causality and step size: (nj+1 —ni,miy1 —m;) € {(1,0),(0,1), (1,1)}.



The total cost associated with a path is given by

1
Cp(l',y) = Z ’xm - yml‘ .
=1

The optimal causal path is obtained via dynamic programming by minimizing ¢,(x,y) subject to the
above constraints. To ensure scalability across thousands of daily stock pairs, the search space is
restricted to a band around the diagonal shifted by the initial lag estimate [init. This banded dynamic
programming approach allows moderate deviations from the constant lag while preventing spurious
alignments and ensuring computational feasibility.

Step C: Lag Estimation and Stability Criterion Once the optimal causal path has been identi-
fied, the effective lag along the path is summarized by its empirical mean and dispersion. The average

lag is defined as
I
Z = Z(TLZ — mi),
i=1

~1 =

and the lag fluctuation is quantified by

1
g|] =

((nZ —m;) — f>2

1

)

The estimated lag [ determines the leader—follower relationship within the pair: a positive value
indicates that stock z tends to lead stock y, while a negative value indicates the opposite. The
fluctuation o; serves as a stability measure: low values correspond to persistent lead—lag relationships,
whereas high values indicate unstable or noisy alignments. Only pairs with a non-zero estimated lag
and sufficiently low o; are retained for trading consideration.

Daily Pair Selection and Output Format For each formation day, the OCP algorithm is applied
to all candidate stock pairs. The resulting pairs are ranked according to increasing lag fluctuation oy,
and the ten most stable pairs are selected. The output of the OCP stage for each trading day is a
structured table containing, for each selected pair:

e the leader stock,

e the follower stock,

e the estimated lag l ,

e the lag fluctuation ;.

This daily output constitutes the sole input to the trading strategy described in Section 3.3. Im-
portantly, the OCP algorithm itself does not generate trading signals; it only identifies directional
relationships that are subsequently exploited by the strategy.

3.3 Distribution of Causal Lags

To validate the dynamic nature of the OCP algorithm, we analyze the distribution of the estimated
optimal lags (I) across all traded pairs (Figure 3).

As shown in the histogram, the distribution is heavily concentrated in the 1-to-2 minute range. This
finding suggests that while the OCP algorithm allows for flexible time warping, the most statistically
significant arbitrage opportunities in the S&P 100 are extremely short-lived. The rapid decay of
these lags reinforces the need for a high-frequency execution infrastructure, as the echo of the leader’s
movement dissipates almost immediately. The presence of a thin tail extending beyond 5 minutes
confirms that OCP occasionally identifies longer-term structural delays, but these are rare compared
to the dominant immediate reactions.
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Figure 3: Distribution of Optimal Lags (1) identified by OCP. The distribution is heavily right-skewed,
indicating that most exploitable lead-lag relationships occur at very short horizons (1-2 minutes).

3.4 Trading Strategy Implementation

To evaluate the economic value of the causal relationships identified by the OCP algorithm, we imple-
ment a statistical arbitrage strategy. The strategy operates on a rolling daily basis: for every trading
day D, the universe of tradable pairs is defined exclusively using data from the formation day D — 1.
This strict separation prevents look-ahead bias in the pair selection process.

The trading logic relies on a ”Leader-Follower” mechanism. We hypothesize that significant idiosyn-
cratic shocks to the ”"Leader” stock will eventually be reflected in the ”Follower” stock after a time
lag [ estimated by the OCP algorithm.

3.4.1 Signal Generation

For each minute ¢ on trading day D, we monitor the returns of the Leader stock, denoted as rtL. We
compute a rolling mean i and standard deviation o} over a lookback window of w = 20 minutes. A
trading signal is triggered if the Leader’s return exhibits a significant anomaly, defined as a deviation

exceeding k = 2.5 standard deviations from the rolling mean:
r{ — | > k- of (1)

Additionally, to filter out negligible price movements that would likely be eroded by transaction costs,
we impose a minimum economic threshold constraint: |rtL| > Tmin, Where rpin is set to 4 basis points

(0.04%).

3.4.2 Market-Neutral Execution
Upon detecting a positive shock in the Leader (rf > ul + kol), we assume the Follower stock is
temporarily undervalued due to the response latency. To exploit this while neutralizing broad market

risk, we enter a market-neutral pair trade:
e Long the Follower stock (rf").

e Short the Market Index (!, represented by SPY).



Conversely, if the Leader suffers a negative shock, we Short the Follower and Long the Index. To ensure
realistic execution, trades are entered at the open of the subsequent minute (¢ + 1), acknowledging
that the signal calculated at time ¢ uses close-to-close returns and is only actionable afterwards.

3.4.3 Dynamic Reaction Window

A critical innovation of this framework is the use of OCP metrics to define a dynamic exit schedule.
Unlike fixed-horizon strategies, the holding period is tailored to the specific stability of the pair. The
expected reaction window W is defined as:

W = f—zal, [+ 20 (2)

where [ is the estimated lag and oy is the lag fluctuation derived from the OCP path. We use z ~ 2.8
(corresponding to a 99.5% confidence interval).
The position is closed when either of the following conditions is met:

1. Profit Take: The cumulative return of the hedged position (r¥"—7!) exceeds the target threshold

rmin Within the reaction window.

2. Time Stop: The time limit (f+ zoy) expires without the target return being met. In this case,
the position is liquidated immediately to free capital.

This mechanism ensures that the strategy allows more time for ”looser” causal links (high o;) to
converge, while quickly discarding failing signals for ”tight” links.

4 Results

We evaluate the performance of the OCP-based statistical arbitrage strategy over the period from
January 2015 to March 2017. To isolate the predictive power of the causal paths identified by the
OCP algorithm, we first analyze the strategy’s performance on a gross basis (excluding transaction
costs).

4.1 Aggregate Performance

Table 1 summarizes the key performance indicators of the strategy. Over the backtesting period,
the strategy generated a cumulative return of 34.49%, significantly outperforming a market-neutral
baseline. The Annualized Sharpe Ratio of 1.73 indicates a strong risk-adjusted return, suggesting that
the ”Leader-Follower” signals provide a genuine statistical edge.

Table 1: Strategy Performance Metrics (Gross, Jan 2015 — Mar 2017)

Metric Value
Total Return 34.49%
Annualized Sharpe Ratio 1.73

Max Drawdown -5.39%
Daily Win Rate 46.85%
Total Trades 9,969

An interesting observation is the Daily Win Rate of 46.85%. Although the strategy wins less than
half the time, it remains highly profitable. This positive skew implies that the average gain from a
successful OCP convergence is significantly larger than the average loss from a failed signal. This
validates that the OCP algorithm is capturing substantial mean-reversion opportunities rather than
random noise.



4.2 Equity Curve and Risk Analysis

Figure 4 illustrates the cumulative profit and loss (PnL) of the strategy. The equity curve demonstrates
consistent growth with limited volatility, validating the effectiveness of the market-neutral hedging
approach (Long Follower / Short SPY). The steady upward trend confirms that the alpha is not
driven by a few lucky outliers but by a persistent edge.

Cumulative PnL Over Time (2015-2017)
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Figure 4: Cumulative returns of the OCP Strategy (Gross). The upward trajectory indicates consistent
alpha generation over the 2-year period.

The risk profile, shown in Figure 5, remains stable throughout the period, with a maximum drawdown
of only -5.39%. This low drawdown is a direct result of the dynamic reaction window mechanism,

which quickly liquidates positions that fail to converge within the expected OCP lag time ([ + zoy).

Strategy Drawdown

Drawdown (%)

2015-01 2015-04 2015-07 2015-10 2016-01 2016-04 2016-07 2016-10 2017-01 2017-04
Date

Figure 5: Drawdown profile over the trading period. The strategy avoids deep losses, highlighting
effective risk management.



5 Discussion

5.1 Signal Efficacy vs. Transaction Costs

While the gross performance confirms the predictive power of the OCP algorithm, the practical im-
plementation faces challenges due to execution friction. Our backtest recorded a total of 9,969 trades,
implying an average turnover of approximately 18 trades per day.

When applying a realistic transaction cost model of 4 basis points per trade, the net performance drops
significantly to -364.27%. This disparity highlights a classic trade-off in high-frequency statistical
arbitrage: the signal is strong (Sharpe 1.73), but the current entry threshold (rpi, = 4 bps) is too
sensitive. The strategy captures many small, profitable moves that are ultimately drowned out by the
cost of crossing the bid-ask spread.

5.2 Sensitivity Analysis: Optimizing Signal Quality

To explore the trade-off between signal capture and execution volume, we performed a sensitivity
analysis by varying the entry threshold (ryi,) from 4 to 20 basis points (Figure 6).

Sensitivity Analysis: Effect of Entry Threshold on Profitability
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Figure 6: Sensitivity of Gross Return (blue line) and Trade Volume (red bars) to the entry threshold
(rmin). While higher thresholds reduce the total cumulative return, they reduce trade volume at a
significantly faster rate, implying an improvement in average profit per trade.

As illustrated in Figure 6, there is a non-linear relationship between the threshold and strategy per-
formance. Increasing the threshold from 4 bps to 15 bps reduces the trade count by approximately
70% (from ~10,000 to ~3,000), whereas the Gross Return only declines by approximately 45%.

This divergence is critical. It indicates that a large portion of the strategy’s volume comes from
marginal, low-quality signals that contribute disproportionately to transaction costs while adding
little to the bottom line. By raising the threshold to 15 bps, the strategy effectively filters out this
noise, isolating the high-conviction opportunities that are robust enough to survive transaction fees.

6 Conclusion and Future Work

6.1 Conclusion

This project explores the application of the Optimal Causal Path (OCP) algorithm to intraday sta-
tistical arbitrage within the S&P 100 data. By replacing traditional correlation-based metrics with a



dynamic time-warping framework, we aimed to capture non-linear lead-lag relationships that persist
despite market efficiency.

Our results provide strong empirical evidence that the OCP algorithm successfully identifies predictive
causal links. The strategy achieved a Gross Total Return of 34.49% and an Annualized Sharpe Ratio
of 1.73 over the 2015-2017 period, validating the core hypothesis that ”"Leader” price movements can
predict ”Follower” reactions. However, the analysis also highlighted the severe constraints of high-
frequency execution. The strategy’s high turnover (nearly 10,000 trades) resulted in a Net Return of
-364.27% after accounting for transaction costs, demonstrating that the current signal sensitivity is
economically unviable without optimization.

The distribution of optimal lags, heavily concentrated at the 1-minute mark, confirms that the S&P
100 is highly efficient, with information transmission occurring on timescales likely faster than the
1-minute resolution of our dataset. Nevertheless, the OCP framework proved robust in determining
the direction of these causal links, providing a valuable directional filter for pairs trading.

6.2 Future Work

To bridge the gap between theoretical alpha and realizable profit, future research should focus on
three key areas:

1. Data Expansion: We restricted our analysis to the S&P 100, a universe of highly liquid,
efficient stocks where lags are minimal. Applying the OCP framework to small-cap indices or
cross-asset pairs (e.g., ETFs vs. component stocks) may reveal longer, more exploitable lags due
to lower liquidity and slower information diffusion.

2. Execution and Resolution: The current analysis aggregated high-frequency BBO data into
1-minute intervals to ensure computational feasibility. However, this aggregation compresses
the sub-minute lead-lag relationships visible in the raw data. Future work should utilize the
original tick-level data to resolve these milliseconds-level lags. Additionally, replacing the current
market-order assumption with limit orders would capture the bid-ask spread rather than paying
it, significantly reducing the transaction costs observed in this study.
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